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Abstract—Criminals, using crypto wallets referred to as
Deceptive Creator Wallets (DCWs), have orchestrated
fraudulent activities by luring victims to transfer funds to
fraud smart contracts. Since it is almost impossible to
reverse the transactions or pinpoint the true identity of the
criminals, the industry has turned to flagging such contracts
as user warnings. However, the current mitigation focuses on
individual contracts, overlooking the DCWs behind the
scenes. Consequently, our research found that this oversight
allows fraud to thrive. To address this, we developed
Cybertrack, an automated forensic analysis pipeline that
processes a single fraud contract and generates evidence that
the legal authorities need to mitigate the fraud. Applying
Cybertrack to 157 confirmed fraud contracts, our research
uncovered 1,283,198 associated contracts linked to 91 DCWs,
responsible for 2,638,752 ETH ($2,089,504,682) in illicit
profits. More alarmingly, Cybertrack traces the fraudulent
activities back to September 2017. In response, we are closely
collaborating with Etherscan and FBI to combat the fraud
identified in our study.

1. Introduction

Smart contracts have been exploited to orchestrate
fraudulent activities, resulting in financial losses [1], [2].
In this scenario, the criminals use their crypto wallets
referred to as Deceptive Creator Wallets (DCWs) to deploy
fraud smart contracts. The criminals then lure victims with
false promises, leading them to transfer funds to these
contracts, which then illicitly divert the victims assets to
criminal-designated recipients. The irreversible and
anonymous nature of blockchain makes it impossible to
reverse the transactions or to identify the identity of these
criminals. To mitigate this, the industry flags fraud
contracts as warnings to users, as illustrated in Figure 1
on Etherscan [3]. In fact, several works have been
proposed to automate fraud contract reporting [4]–[18].
Unfortunately, the current mitigation focuses on individual
contracts, overlooking the DCW orchestrating the fraud.

Compounding the issue is the low cost of smart
contract deployment, as DCWs can continuously deploy
new fraud contracts to avoid detection. Additionally,
blockchain not only enables wallets to deploy contracts but
also allows contracts to deploy others, giving DCWs a
fast-track method for fraud contract creation through
continuous invocation. DCWs use this to conceal the

recipients of fraud contracts by dynamically resolving
on-chain data. This approach leads to quick deployment of
complex, interconnected fraud networks, where these
associated contracts exhibit various capabilities, including
asset transfer and new contract deployment.

Imagine this forensic scenario: FBI agents receive a
report concerning a contract suspected of being involved in
fraudulent activities. Ideally, FBI agents would go beyond
merely mitigating the reported fraud contract; they would
proactively delve into investigating the DCW orchestrating
these activities to collect critical evidence. These evidence
should encompass: 1 The associated contracts from the
same DCW along with their recipients. 2 The provenance
of dynamically resolved recipients, and 3 The attribution
of capabilities to the contracts. FBI agents could then
submit collected evidence to the court. Upon authorization,
FBI agents could utilize Evidence 1 to flag additional
accounts (i.e., wallets, contracts) on the blockchain and
freeze assets [19], effectively disrupting the fraudulent
activities. Additionally, Evidence 2 sheds light on the
origins of dynamically resolved recipients, providing
agents with indicators of early recipient changes and
enabling more proactive mitigation. Finally, the analysis of
contract capabilities in Evidence 3 uncovers targeted
mitigation strategies for specific capabilities (e.g.,
monitoring contracts designating fraud contract recipients).
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Figure 1: Flagged fraud contract.

Traditionally, FBI agents would acquire such evidence
by relying on explicit clues, the historical transactions. In
fact, prior research [4], [11] leveraged these explicit clues
to identify fraud contracts. However, these contracts are
just the starting point for forensic analysis. A smart
contract can execute various transactions depending on
different conditions. Consequently, the FBI agents quickly
find out that a forensic approach that focuses strictly on



explicit clues might cause investigators to omit evidence
from yet-to-be-executed transactions, thereby halting
investigation until the relevant transactions occurred.

From a different perspective, contract transactions on
blockchain are direct results of their implementations.
Therefore, we shifted our focus to how a smart contract’s
implementation could reveal implicit clues of fraudulent
activities orchestrated by DCW, such as: (1) future
transactions that DCW’s contract is programmed to
execute, (2) the origin of the recipients used by DCW’s
contract, and (3) the capabilities with which the contract is
equipped. In fact, several works have been
proposed [20]–[26] to perform program analysis on smart
contracts. However, these techniques target vulnerability
detection in benign contracts. The significant distinction
between identifying vulnerabilities and discerning fraud
capabilities means that these methods are not readily
adaptable for extracting forensic clues from fraud contracts
and the DCW operating behind the scenes.

Drawing inspiration from real-world forensic
investigations that gather evidence from various clues at
crime scenes, we propose combining explicit clues with
advanced program analysis of fraud contracts for enhanced
forensic analysis. Base on this insight, we developed
Cybertrack, a post-detection forensics pipeline enabling the
FBI agents to extract three key pieces of evidence of
DCW. Given one fraud contract, Cybertrack first uses
Associated Contracts Recovery (§3.1.1 to pinpoint
associated contracts by utilizing explicit clues. This
process mirrors the method of unraveling a criminal
network, starting from one identified suspect and
extending to the ringleader, additional suspects, and the
middleman orchestrating the recruitment. Next, Cybertrack
conducts symbolic analysis on each contract deployed by
DCW (§3.1.2), identifying all potential recipients without
depending on historical transactions. This step is
comparable to identifying all possible contacts of the
suspects, even those yet to engage in criminal activity.
Cybertrack then combines explicit and implicit clues in
Recipient Provenance Investigation (§3.2) to uncover the
origin of dynamically resolved recipients. This resembles
discovering the middleman’s hidden list of recruits,
enabling authorities to detect future suspect recruitment
early. Finally, Cybertrack applies Capability Attribution
Analysis (§3.3) to assign specific capabilities to each
contract deployed by DCW, similar to a detective
deducing the roles each suspect plays in a criminal
network to tailor countermeasures for each role.

Deploying Cybertrack on 157 confirmed fraud contracts,
our work identified 1,283,198 associated contracts across 91
DCWs, making in total of 2,638,752 ETH ($2,089,504,682)
illicit profit. More alarmingly, Cybertrack’s analysis track
the fraudulent activities back to September 2017. We are
closely collaborating with Etherscan [3] and FBI [27] to
mitigate the fraud uncovered by our study. Lastly, we have
made Cybertrack available at: <redacted>

2. Motivation

Accounts (i.e., wallets and contracts) on Ethereum are
identified by a 40-character hexadecimal strings, known as
addresses. Similarly, transactions on Ethereum can be
identified by 64-character hexadecimal strings, commonly
referred to as transaction hashes. To enhance the
readability of the paper, we have employed abbreviations
of last 6 characters of addresses and transaction hashes
and prefix the abbreviations with W- for wallet, C- for
contract, and T- for transaction. For example, the fraud
contract shown in Figure 2a can be identified by address,
0x70305b080efc49eb5dfb9bda78aea516c3 98f804 . In
this paper, we will refer it as C- 98f804 . For the full
addresses and transaction hashes used throughout this
paper, readers are directed to Table 6 in §B.

2.1. Backgroud

Smart Contract. A smart contract is a self-executing
program operating on a blockchain, set to action when
specific predefined conditions are satisfied. The execution
of smart contract comprises three core components: (1)
The contract’s bytecode, which contains the compiled
instructions of the smart contract code. (2) A execution
context, which includes the Program Counter (PC),
available gas, stack, and memory. These components
manage the execution flow and intermediate computations
during the execution of a smart contract; (3) A persistent
storage mechanism specific to each smart contract,
providing a mapping from 256-bit words to corresponding
256-bit words. This storage is utilized by smart contracts
for preserving state across transactions.
Transaction & Trace. A transaction represents an action
initiated by an external account (i.e., a user’s wallet) that
interacts with the blockchain. Transactions can encompass
various actions such as transferring ETH, interacting with
a smart contract, or even deploying a new contract. Traces,
on the other hand, provide a step-by-step execution logs
that detail all the internal calls and state changes triggered
by a transaction. For example, consider a transaction
where a user sends ETH to a smart contract, which then
distributes this ETH to other addresses based on its logic.
The transaction itself records the user’s action of sending
ETH to the contract. However, the trace of this transaction
would reveal the detailed sequence of events inside the
contract, such as the contract calling its internal functions
to distribute ETH to other addresses.
Event Logs. Event logs are small data amounts on the
blockchain, utilizing five opcodes (LOG0 to LOG4) for log
emission. Each log can include up to four 32-byte topics
and a data section. The topics typically describe the event,
often incorporating the event signature—a
Keccak-256 [28] hash of the event name along with its
parameter types. This allows for targeted searches, such as
identifying logs for specific events or addresses. The data
section complements the topics by providing
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non-searchable, additional information. It can contain more
complex details, like arrays or strings, making the logs
both comprehensive and flexible. Consider an event like
event Event(address indexed from, address to).
For this event, the first topic is derived using a
Keccak-256 hash on the event signature
Event(address,address). The second topic is the
indexed from address. Since the to parameter is not
indexed, its value is stored in the log’s data section.

2.2. Preliminary Forensics Investigation
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Figure 2: Fraud contract in real world.

To illustrate the method of deriving three pieces of
evidence, we have devised a hypothetical forensic
investigation scenario modeled on a real-world case. FBI
agents received information from an individual who
reported being defrauded by a deceptive message on
Telegram [29]. As shown in Figure 2a, DCW propagated a
deceptive message impersonating Crypterium [30], a
blockchain startup. In this message, the DCW promised a
giveaway, conditional upon interactions with the contract
identified by C-98f804. Upon delving deeper, the agents
uncovered several similar fraudulent messages
disseminated across various platforms, as listed in Figure 5
and Figure 6 in §A. To ascertain the fraudulent nature of
this contract, the agents located a confirmation from
Crypterium on X.com [31], as evidenced in Figure 2b.

At this juncture, the agent possessed only the
confirmed fraud contract address, C-98f804. To proceed
with legal action, the agents required three pieces of
evidence, as outlined in §1, which would be necessary to
present in court. This would support a more proactive
mitigation strategies, such as flagging more fraud contracts
or freezing the associated wallets or contracts (as was
previously done by the FBI [19]).
Associated Contracts & Recipients. Extracting
Evidence 1 consists of two steps: first, identifying the
associated contracts, and second, pinpointing their
recipients. Our approach begins by leveraging the
transparent nature of blockchain to reveal associated
contracts. Specifically, our investigation started with an

TABLE 1: RECOVERED EVIDENCE FROM
CYBERTRACK’S FORENSICS INVESTIGATION.

Fraud Contract C-98f804

Creator W-521058

Evidence 1 Associated Contracts:
Direct: 395,685 ( 11)

Indirect: 65,330 ( 0)
Recipients: W-763bc0

Evidence 2 C-48d304 → Storage → Contract

Evidence 3 attr1: Forced Transfer (105,015)
attr2: Contract Self-Replication (1)
attr3: Event Emission (395,684)

Fraud Impact Victim: 232,011
ETH: 1,240,355

: Number of contracts flagged on Etherscan [3].

analysis of transactions to C-98f804, leading us to
transaction T-8bbae5 that deployed the contract. The
sender information embedded in this transaction reveals
the DCW as W-521058. Tracing back from this
transaction, we further explored other contracts deployed
by W-521058 directly, amounting to 395,685 in total.
Subsequent examination of transactions from these
contracts unveiled a total of 251,087 with historical
transactions to the same recipient W-763bc0.

Another problem that emerged during this process is
that 144,597 (36.5%) contracts show no historical
transactions. Sole reliance on explicit clues cannot reveal
the recipients of these contracts. Instead, we turned our
attention to the first implicit clue: the contract’s
implementation could reveal the future transactions that
the contracts is programmed to execute. Despite the
diverse logic in fraud contracts, they still need to employ
CALL opcode for ETH transfers. A detailed analysis of the
CALL callsites within these contracts revealed that all
144,597 contracts possess the capability to transfer victim
ETH to a single recipient, W-763bc0. As shown on Row 3
of Table 1, this led to the generation of Evidence 1 ,
showing that there are 395,684 associated contracts
capable of redirecting victim assets to the recipient wallet
W-763bc0. Notably, one contract deployed by W-521058
remains unattributed. The subsequent sections will
introduce the methods to dissect this singular contract.
Masquerading As Inactive. The previous analysis of
W-521058 shows a constant fraud contracts deployment
ranged from Oct 2017 to Jan 2021. At first glance, FBI
agents might conclude that DCW ceased the fraud post-Jan
2021 due to a halt in deploying new fraud contracts.
However, they soon realized that 98.4% of transactions
initiated by W-521058 after that were invoking C-48d304.

This motivated us to switch our focus to contract
C-48d304. Our analysis of the implementation showed
that C-48d304 uses opcode CREATE2 to deploy new
contracts, activated upon its invocation. To make things
worse, DCW used C-48d304 to indirectly deploy new

3



contracts, which were designed to transfer victim assets.
This led to the discovery of an additional 65,330
associated contracts, as detailed on Row 3 of Table 1,
significantly expanding the scope of the investigation.

Given the newly discovered associated contracts
deployed indirectly by DCW, FBI agents now need to
know whether these contracts share the same recipients as
before. Surprisingly, FBI agents quickly realized that they
could not extract recipient addresses as before by
examining the address passed to the CALL opcode, because
the contracts dynamically resolved the recipients. This
brought us to the second implicit clue: in-depth program
analysis on the contract could reveal the origin of
dynamically resolved recipients. Equipped with this
implicit clue, we discovered that the newly identified
contracts retrieve values from their storage, which are then
passed as recipient addresses to the CALL opcode.
Recognizing that these indirectly deployed contracts use
storage to determine recipients, the key question became:
who defines this storage. To answer this question, we delve
deeper into the contract deployment chain (i.e., W-521058
→ C-48d304 → Child_Contracts). It turned out that the
parent contract C-48d304 defines the storage of the child
contracts during the deployment process. Interestingly, the
recipient address set by the parent contract points to the
same recipient W-763bc0. By performing the provenance
analysis on the contract deployment chain, we generated
Evidence 2 as shown on Row 4 of Table 1: The
reconstructed provenance of the fraud contract deployment
chain reveals that 65,330 contracts lack hardcoded
recipients. Instead, these contracts determine the recipient
dynamically via their own storage parameters, as defined
by the parent contract C-48d304.

Capabilities Attribution. Evidence 1 and Evidence 2
present a good opportunity for the agents to flag the
accounts mentioned therein, serving as a reactive strategy
to mitigate the ongoing fraudulent activities. However, due
to the immutable nature of the blockchain, completely
eliminating DCW from the system is almost impossible.
Therefore, it becomes equally crucial for the FBI agents to
implement proactive strategies aimed at preventing future
fraudulent activities. This led to our last implicit clue:
in-detailed program analysis could identify the capabilities
of contracts, which can then be mapped to corresponding
proactive mitigation strategies. Specifically, as shown on
Row 5 of Table 1, we found in total of 3 different
capabilities presented in the associated contracts as
Evidence 3 . Our discovery of a hardcoded recipient in
CALL led to the identification of the Forced Transfer
group, prompting a reactive strategy of flagging these
accounts and their recipients. Additionally, the detection of
CREATE2 opcode usage for deploying asset-transferring
contracts highlighted the Contract Self-Replication group,
enabling FBI agents to proactively flag future deployed
contracts. Furthermore, we pinpointed 395,684 contracts
with the Event Emission capability, using the LOG opcode
to generate blockchain event logs. Given the indexable,

FBI agents can actively monitor these logs for early
detection of fraudulent activities.

With Evidence 1 , Evidence 2 , and Evidence 3
generated, we further evaluated the effectiveness of current
mitigation effort. Alarmingly, as indicated by on Row 3
of Table 1, only 11 out of 461,015 associated contracts are
flagged on Etherscan [3]. Compounding this issue, we
analyzed historical transactions to these contracts,
assessing the impact of fraud activities by W-521058. This
led to the discovery of 232,011 unique victim addresses
and an illicit profit of 1,240,355 ETH. These findings
highlight the urgent need for forensic analysis focused on
DCWs and we collaborating closely with Ethersacn [3]
and FBI [27] to mitigate the fraud.

3. Design

Cybertrack equips the FBI agents with the techniques
to investigate the DCW orchestrating the fraudulent
activities using smart contracts. Starting with a fraud
contract, Cybertrack generates Evidence 1 by uncovering
the associated contracts from the same DCW along with
the recipients they could interact with (§3.1). Subsequently,
Cybertrack conducts a recipients provenance analysis on
dynamically resolved recipients to produce Evidence 2
(§3.2). Lastly, Cybertrack performs Capability Attribution
Analysis to identify and attribute capabilities to associated
contracts, establishing Evidence 3 .

3.1. Associated Contracts Recovery

Evidence 1 could help FBI agents freeze the assets
and flag associated contracts and recipients beyond the
confirmed fraud contract. To derive Evidence 1 ,
Cybertrack conducts Associated Contracts Investigation
and Recipients Forensic Investigation.

3.1.1. Associated Contracts Investigation. Given a
reported fraud contract α, Cybertrack begins by extracting
all historical transactions directed to this contract,
represented as T = {t1, t2, ..., tm}. For instance, when
considering the fraud contract C-98f804 detailed in §2.2,
Cybertrack records a total of 455 transactions directed to
it. Naive FBI agents might assume the first transaction t1
to be the creation transaction. Unfortunately, as seen in
real world [32] and §6.2, there are instances where victims
transact with a fraud contract even before its deployment,
rendering the first transaction an unreliable indicator. To
address this, Cybertrack traverses through T and identifies
the transaction that creates the fraud contract, termed as
creation transaction, denoted as txcr. For the contract
C-98f804, Cybertrack identifies txcr = T-8bbae5. This
identified creation transaction acts as an explicit clue,
offering the FBI agents a crucial lead to determine the
sender of the transaction as DCW’s wallet, denoted as w.
Ideally, the agents would then monitor all transactions
initiated by the w and categorize associated contracts as
{tm.to|tm ∈ T ∧ tm.type == CreateContract}.
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Algorithm 1: Identify Associated Contracts
Input: DCW w
Output: Associated Contracts Set C

1 C ← ∅
2 Function GenerateTxnGraph(txn)
3 G← ∅;

// Iterate over traces in txn to build graph
4 for trace ∈ txn do
5 from← trace.from
6 to← trace.to
7 edge← trace.type
8 G.add_edge(from, to, edge = edge)
9 end

10 return G
11 end
// Extract all transactions From w

12 Tw ← GetAllTxnFrom(w);
// Generate contract deployment graph Of w

13 G←
⋃

∀txi∈Tw

GenerateTxnGraph(txi)

// Update C with contracts deployed directly
14 C ← {edge.to|edge ∈ G ∧ edge.type == CreateContract}
// Identify contracts deployed indirectly

15 for si ∈ C do
16 Tsi ← GetAllTxnFrom(si) for txj ∈ Tsi do

// Handle different transaction type
17 switch txj .type do

// If contract deploy other contracts
18 case CreateContract do

// Extract deployed contract
19 sj ← txj .to

// Get all transactions initiated by
the deployed contract

20 Tsj ← GetAllTxnFrom(sj)
// Track contract recursively

21 G← G∪
⋃

∀txk∈Tsj

GenerateTxnGraph(txk)

22 C ← C ∪ si
23 end
24 end
25 end
26 end
27 return C

Unfortunately, as highlighted in §2.1, W-521058
deployed 65,330 fraud contracts indirectly by invoking
contract C-48d304. Since those transactions are simple
contract call, tracking only contract creation transactions
initiated by DCW could produce inaccurate Evidence 1
easily. This nuance underscores the importance for FBI
agents to discern the deployment chain. To overcome this
challenge, Cybertrack utilizes the traces of each
transaction. This solution is built upon an observation: If
an invoked contract deploys a new contract during a
transaction, this action will be recorded in the transaction’s
traces, as it forms part of the subsequent activities of the
invoked contract. Armed with txcr, Cybertrack deploys the
methodology presented in Algorithm 1. As shown
on Line 4 of Algorithm 1, for a given transaction,
Cybertrack navigates through traces in that invocation to
craft the graph G = (E ,V). Here, each node e ∈ E
presents an account, and every edge v ∈ V presents a
trace, which could be subsequent behaviours (e.g., contract
invocation, contract creation). By tracking the trace with

type CreateContract, Cybertrack is able to identify the
contracts deployed indirectly.

Given the ability to identify contracts deployed both
directly and indirectly from transactions, Cybertrack now
could identify associated contracts by performing forensic
analysis on DCW’s wallet w. Specifically, Cybertrack
starts by tracking all transactions initiated by w (shown
on Line 12 of Algorithm 1), designated as Tw. Then, for
each transaction txi ∈ Tw, Cybertrack uses
GenerateTxnGraph introduced on Line 2 in Algorithm 1
to distill the internal trace graph, subsequently
consolidating them to form the transaction graph G for
wallet w. Essentially, G encapsulates transaction used by
w to deploy contracts directly and the invocation of the
contract. To delve deeper into this chain and disclose
contracts spawned via it, as shown on Line 16
of Algorithm 1, Cybertrack gathers traces initiated by each
contract si, termed Tsi . If a trace, txj , results in
CreateContract (shown on Line 18 of Algorithm 1),
Cybertrack first updates Tsi with the transactions from this
newly deployed contracts recursively and then incorporates
the deployment result into associated contracts.

...
0x08: ADDRESS
…
0x1f: BALANCE
…
0x25: GT
…
0x2b: JUMPI

0x2c: PUSH1 0x0
…
0x31: PUSH20 𝑎𝑑𝑑𝑟
…
0x77: CALL

this.addr Address of the executing contract

Stack (before and after) CommentAssembly

∅

this.addr this.balance←𝔹
Get balance of address, return 
symbolic data 𝔹

0x0𝔹 𝔹 > 0 Whether the current balance 
𝔹 is bigger than 0 

𝔹 > 00x30 ∅ Jump to 0x30 if 𝔹 is bigger than 0 

∅ 0x0 Push 0 on stack

∅ 𝑎𝑑𝑑𝑟 Push 𝑎𝑑𝑑𝑟 on stack

…𝔹𝑎𝑑𝑑𝑟gas success Extracts 𝑎𝑑𝑑𝑟 as recipient 
from stack

𝑃𝑎𝑡ℎ!

𝑃𝑎𝑡ℎ"

Figure 3: Recipient investigation of C-98f804.

3.1.2. Recipient Investigation. Now the only missing
piece of Evidence 1 is the recipients along with the
associated contracts identified. This identification enables
FBI agents to flag accounts and freeze ETH assets more
proactively. However, as illustrated in §2.2, our initial
investigation indicates that 36.5% of the fraudulent
contracts deployed by W-521058 lack any historical
transactions. Relying solely on, or waiting for, these
explicit clues (i.e., transactions) could significantly hinder
the progress of the investigation.

To overcome this challenge, Cybertrack conducts a
transaction-agnostic symbolic analysis on each associated
contract. Specifically, Cybertrack designates the input
space I, storage space S, and account balance B as
symbolic. This symbolic designation allows Cybertrack to
conduct a multi-path exploration based on the contract’s
logic. Figure 3 shows a segment of the opcode in fraud
contract C-98f804, as discussed in §2.2. As shown at
address 0x1f in Figure 3, when Cybertrack symbolically
executes BALANCE opcode to retrieve balance of contract,
Cybertrack marks the returned value as symbolic.
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Subsequently, this symbolic value is used by GT opcode
shown at address 0x25 to assess if the balance exceeds 0.
Upon reaching the JUMPI opcode at address 0x2b
in Figure 3, which performs a conditional jump based on
the preceding comparison, Cybertrack forks the execution
state into two paths. One path, Path1 in Figure 3,
operates under the condition B > 0, while the other,
Path2 in Figure 3, assumes B ≤ 0, allowing Cybertrack to
explore behaviors in both contexts. As depicted at address
0x31 in Figure 3, the fraud contract deploys PUSH20
opcode to push an address addr onto the stack. However,
the specific purpose of addr remains unclear to
Cybertrack. Subsequently, when the CALL opcode is
invoked at address 0x77 of Figure 3, Cybertrack retrieves
the address addr from the stack, indicating its use as a
recipient address. Notably, smart contract permits the
invocation of code from other contracts via DELEGATECALL
or CALLCODE. In fraud contracts, such delegation can
obscure potential transaction logic in other contracts. To
uncover all possible recipients used by contract,
Cybertrack recursively delves into contracts invoked with
DELEGATECALL or CALLCODE, inheriting constraints from
the caller contract. This transaction-agnostic analytical
method equips FBI agents with the capabilities to analyze
associated contracts and pinpoint potential recipients,
independent of historical transaction data.

3.2. Recipient Provenance Analysis

Following the derivation of Evidence 1 , a subsequent
challenge arises that not all contracts employ hardcoded
recipients; many use dynamic resolution. As Cybertrack
tracks recipients from the stack during multi-path
exploration (§3.1.2), dynamically resolved recipients
present a challenge, lacking hardcoded addresses on the
stack. This situation motivates Evidence 2 , which focuses
on the recipient’s provenance, including both the resolution
logic and the recipient’s origin. With Evidence 2 , FBI
agents gain the ability to flag accounts that define
recipients and monitor recipient changes at upstream,
enabling proactive mitigation of fraudulent activities.
Cybertrack employs In Contract Resolution Analysis and
Cross Contract Resolution Analysis to ascertain the
provenance of dynamically resolved recipients.
In Contract Resolution Analysis. Cybertrack determines
dynamical resolution when the recipient, identified in
Recipient Investigation (§3.1.2), corresponds to a symbolic
value recps. Then, Cybertrack conducts a backward slice
on recps to identify the origin of recps. For instance, in
analyzing the fraud contract deployed by C-48d304 (§2.2),
Cybertrack uncovers that the recipient on stack is a
symbolic value. When Cybertrack performs backward slice
on recps, it traces back to opcode AND at address 0x4d,
indicating recps is from a logical AND operation. Moving
further back, Cybertrack encounters another AND operation
at address 0x37. Continuing this trace, Cybertrack reaches
an opcode DIV at address 0x21. This division operation
implies that recps is depend on a division calculation. The

backward slice eventually leads Cybertrack to address
0x1a with SLOAD operation. At that moment, Cybertrack
proves that recps originates from the contract’s storage.
By examining the parameter passed to SLOAD, a constant
0x00, Cybertrack concludes that the recipient address is
located in storage location S[0].
Cross Contract Resolution Analysis. The previous
analysis only reveals where the fraud contract loads the
recipient from. However, there is no evidence of which
account defines the recipient address (i.e., the value stored
in S[0]). To address this and draw a full picture of
Evidence 2 , Cybertrack conducts Cross Contract
Resolution Analysis. Notably, smart contracts rely on the
CREATE or CREATE2 opcodes to deploy other contracts.
Executing these opcodes results in a contract deployment
transaction, and eventually, both opcodes need init code as
input. Motivated by this, once Cybertrack determines the
in-contract origin of a dynamically resolved recipient, such
as S[0], it identifies the contract’s deployment transaction
(as discussed in §3.1.1). From this transaction, Cybertrack
extracts the init code used in the contract’s creation. It
then conducts symbolic analysis on this init code to track
changes to the in-contract recipient origin. For instance, in
the case of associated contract C-99bcb3, Cybertrack
pinpoints its deployment transaction with hash T-d9d53e,
initiated by W-521058 via invoking C-48d304. By
analyzing the direct creator contract, Cybertrack extracts
the init code from parameter passed to CREATE2.
Subsequent symbolic analysis on this init code reveals the
use of SSTORE opcode, pointing to key 0 and assigning a
hardcoded address as value. Consequently, Cybertrack
attributes the parent contract as the origin of the recipient.

3.3. Capability Attribution Analysis

Evidence 3 attributes specific capabilities to contracts
associated with a confirmed fraud. These capabilities guide
FBI agents in implementing corresponding mitigation
strategies for ongoing and future fraud prevention.
Cybertrack uses symbolic data, introduced in §3.1.2,
effectively highlights the information flow, to track the
capabilities of associated contracts. An example in §3.2
demonstrates this: when Cybertrack detects symbolic data
propagation from SLOAD to the recipient in a CALL opcode,
it’s interpreted as Dynamic Recipient Resolution, triggering
the Monitor mitigation strategy. The 10 capabilities
identified by Cybertrack, along with semantic models and
mitigation strategies, are outlined in Table 2. As seen on
Column 4 of Table 2, Cybertrack proposes three different
mitigation strategies. The function F (θ) represents
flagging and freezing the account denoted by θ. S(θ)
means scanning the blockchain for contracts sharing the
same code as θ if θ is a contract address, or for identical
data to θ if θ represents raw byte content. M(θ) indicates
monitoring the account specified by θ. Notably,
Cybertrack’s approach to symbolic analysis, independent
of semantic model knowledge, requires only a one-time
effort and offers ease of extension.
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TABLE 2: FRAUD CONTRACT CAPABILITIES, OPCODE, SEMANTIC MODELS, AND MITIGATION STRATEGIES.

Fraud Capability Opcode Semantic Models Mitigation1

Forced Transfer CALL ¬Symb(Stack[1]) ∧Address(Stack[1]) ∧ Stack[2] > 0 F (Stack[1])

User-Defined Transfer CALL Symb(Stack[1]) ∧ Stack[1] ∈ {CALLDATA,MLOAD}
F (Stack[1])∧Address(Stack[1]) ∧ Stack[2] > 0

Recipient Resolution CALL Symb(Stack[1]) ∧ Stack[1] ∈ SSLOAD ∧ Stack[2] > 0
F (Stack[1])
M(SSLOAD)

Address Allocation SSTORE
¬Symb(Stack[1]) ∧Address(Stack[1]) F (Stack[1])
∧∃k.(SLOAD(k) == Stack[1])
∧(CALL(k) ∨ CALLDATA(k)) M(this)

Contract Self-Replication CREATE ¬Symb(Stack[0]) ∧ Code(Stack[0])
F (return)

CREATE2 S(Stack[0])

Dynamic Contract Deployment
CREATE

Symb(Stack[0]) ∧ Stack[0] ∈ SSLOAD ∧ Code(Stack[0])
F (return)
S(Stack[0])

CREATE2 M(SSLOAD)

Predefined Contract Redirection DELEGATECALL ¬Symb(Stack[0]) ∧Address(Stack[0])
F (Stack[0])

CALLCODE S(Stack[0])

Dynamic Execution Delegation
DELEGATECALL

Symb(Stack[0]) ∧ Stack[0] ∈ {SSLOAD}
F (Stack[0])
M(this)

CALLCODE S(Stack[0])

Address Forwarding Strategy SSTORE
¬Symb(Stack[1]) ∧Address(Stack[1]) F (Stack[1])
∧∃k.(SLOAD(k) == Stack[1]) M(this)
∧(DELEGATECALL(k) ∨ CALLCODE(k)) S(Stack[1])

Fraud Event Logging LOGX (Stack[0] ̸= 0 ∧ Stack[1] ̸= 0) S(Stack[2 : X − 1])
∨(Stack[2], ..., Stack[X − 1]) ̸= 0 S(Mem[Stack[0] : Stack[1]])

1: F flags and freezes the specified account; S scan the content across on-chain data; M monitors the designated account.

1. Forced Transfer. When the opcode is CALL and the
first element on the stack is not symbolic (hardcoded) and
the second element is greater than zero, this indicates a
Forced Transfer. This capability involves transferring ETH
to a hardcoded recipient address, suggesting a transfer to a
specific address. Identifying and reporting these hardcoded
recipients allows FBI agents to proactively flag and freeze
the extracted recipient accounts.
2. User-Defined Transfer. This occurs when the CALL
opcode is used with a symbolic recipient, which is
specified by the user. The recipient address is usually
derived from user input, typically through CALLDATA or
MLOAD. Reporting this capability allows FBI agents to
proactively flag recipients specified in the user trasaction.
3. Dynamical Recipient Resolution. In this scenario, the
CALL opcode uses a symbolic first stack element where the
recipient address is dynamically determined. This is
identified when the first stack element depends on the
return of SLOAD. This dynamic resolution allows DCW to
alter the recipient address. Reporting this capability allows
FBI agents not only to flag the current recipient address,
but also monitor the place that contract load recipient
address to detect recipients change before fraud occur.
4. Address Allocation. The SSTORE opcode, coupled with
a non-symbolic first stack element that is an address of
account, indicates Address Allocation capability. Here, a
specific address is hardcoded into storage and subsequently
used in transaction operations, which can be identified if
SLOAD with a particular key equals the non-symoblic data

identified previously and is followed by CALL or
CALLDATA operations. Reporting this allows FBI agents to
proactively flag the account and monitor the transactions
of this contract since it could update the address.
5. Contract Self-Replication. This capability is identified
when either the CREATE or CREATE2 opcode is used with a
non-symbolic first element on stack. It indicates Contract
Self-Replication, where a contract replicates itself using a
predefined template. This is often used in fraudulent
activities to propagate fraud contracts.
6. Dynamic Contract Deployment. Identified by the use
of CREATE or CREATE2 opcodes with a symbolic first
element on stack, this capability suggests Dynamic
Contract Deployment. It is marked by the dynamic
deployment of new contracts, which can vary in nature
and functionality based on the input or state, allowing for
varied fraudulent activities.
7. Predefined Contract Redirection. This occurs when
either the DELEGATECALL or CALLCODE opcode is used
with a non-symbolic first element on stack. It indicates a
redirection of execution to another contract with a
hardcoded address, typically for executing specific
fraudulent actions predefined in the target contract.
8. Dynamic Execution Delegation. Identified by the use of
DELEGATECALL or CALLCODE opcodes with a symbolic first
element on stack, this capability suggests the delegation of
execution to different contracts based on dynamic conditions
or inputs. It allows a contract to adapt its execution and fraud
strategy based on real-time data or states.
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9. Address Forwarding Strategy. This is observed when
the SSTORE opcode is used with a non-symbolic second
element on stack that points to an account, and there exists
a key such that SLOAD with this key equals the value
previously stored, The the loaded value would be passed
to DELEGATECALL or CALLCODE. It indicates a strategic
storing of an address for subsequent use in delegation
operations, implying a planned redirection of execution.
10. Fraud Event Logging. This is observed when
Cybertrack encounters the LOGX opcode (X ∈ [0, 4]), which
is used to log events. This capability suggests that the
contract logs events, which could be used to track the
contract’s activities and identify fraudulent transactions.

Cybertrack is now equipped with the technique to
produce Evidence 3 by attributing capabilities to each
associated contract and proposing corresponding mitigation
strategies. This categorization enables FBI agents to
implement bulk mitigation actions effectively.

4. Validation

We have implemented prototype of Cybertrack in
Python leveraging Mythril [33], with customized module
(1̃0K lines) to perform program analysis, and on-chain
transaction analysis (1̃0K lines). We conducted our
experiments on an Ubuntu 20.04 LTS system equipped
with 12 CPUs and 64GB of memory. For validation
purposes, we randomly selected fraud contracts from our
dataset until we found 12 ones with different DCWs. The
distribution of ground truth dataset aligns with the overall
distribution of DCW and the number of fraud contracts
they deployed, shown in Figure 4 in §5.1. Notably, since
contract flagging serves as a user warning and removing
these accounts from the blockchain is almost impossible,
these flagged contracts might still be active. To ensure the
reproducibility of our study, we based our analysis on the
Ethereum state as of June 26, 2023. Operating within this
state, we derived the ground truth by conducting a manual
investigation on each fraud contract in validation dataset.

4.1. Associated Contracts & Recipients

Table 3 presents Cybertrack’s validation result. As
shown in False Positive (FP) and False Negative (FN)
columns, Cybertrack has generated 7 FPs and 1 FN. To
prevent overstating performance, we assign 1 TP in both
Associated Contracts (Columns 3-4 of Table 3) and
Deploy Length (Columns 7-8 of Table 3) if Cybertrack
correctly identifies all associated contracts and deployment
lengths, respectively, otherwise assigning 0 in each case.
Given this, we can see that Cybertrack achieves an overall
accuracy of 90.91% , demonstrating its efficiency in
generating precise forensic evidence. Delving further into
the performance of Cybertrack, each evidence (Evidence 1
, Evidence 2 , and Evidence 3 ) is evaluated. The first
two columns of Table 3 list the abbreviation of each
reported fraud contract processed by Cybertrack and the

uncovered DCW, respectively. Interested readers could find
the full address of the abbreviation in Table 6.
Columns 3-6 show the validation results for Evidence 1 .

As shown in Total row, Cybertrack pinpointed
1,050,705 associated contracts, along with 17 recipients.
Our ground truth data indicates the presence of 1,050,703
associated contracts with 17 recipients. Upon a thorough
investigation, we found that 2 FPs can be attributed to the
distinct methods employed by DCWs (Row 6 and Row 12
of Table 3) in deploying the fraud contracts. Specifically,
Cybertrack discovered that W-3CD202 and W-5FFDdc
invoked contract C-36FFaE and C-1e3e4e to introduce
new fraud contracts respectively. In the course of
analyzing C-36FFaE, Cybertrack identified that, rather
than employing the standard CREATE or CREATE2
operations for contract deployment, C-36FFaE instead
delegated this task to an alternative contract, C-2C4691.
Consequently, Cybertrack flagged C-2C4691 as associated
contracts. However, a manual review of C-1e3e4e and
C-2C4691 revealed that they were in fact deployed by
different accounts, W-53C9dA and W-13666c respectively.
Considering the FBI agent in this case would have no
obvious evidence of the fraud intention, we consider this
as FP. Notably, Cybertrack still reported these two
contracts since they give FBI agents an important lead of
potential contract abuse. We confirmed these are rare cases
in our dataset. Overall, Cybertrack was 90.91% accurate
in generating evidence, making it robust for our evaluation.

4.2. Dynamically Resolved Recipients

Columns 7-10 of Table 3 presents the validation result
in Cybertrack generating Evidence 2 . As illustrated in
Column 8 and Column 10 of Table 3, Cybertrack has
identified 3,162,963 Deploy Length (number of accounts
involved in the deployment of a contract) and 17 origins
of recipients. As shown on Row 6 and Row 12 of Table 3,
Cybertrack generated FP when analyzing DCW W-3CD202
and W-5FFDdc. This FP is the direct result of the FP in
Evidence 1 generation, as discussed in §4.1. We also see
1 False Negative (FN) shown on Row 6 of Table 3
(W-3CD202) during the track of recipient’s origin. As
discussed in §4.1, when W-3CD202 invokes the
intermediate contract C-36FFaE, it delegates the
responsibility of deploying fraud contracts to C-2C4691.
By manually dissecting the implementation of C-36FFaE,
we found that the function it will trigger in C-2C4691 is
not hard-coded. Instead, it is resolved based on the
transaction invoking C-36FFaE. Consequently, the absence
of a static entry point hindered Cybertrack’s capacity to
pinpoint the contract deployment process used by the
DCW, W-3CD202, thereby impeding the tracing of
recipient origins in contracts deployed by C-2C4691.
Nevertheless, as discussed earlier, such instances are rare
cases. 90.91% accurate in generating evidence makes
Cybertrack robust for our evaluation.
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TABLE 3: CYBERTRACK’S VALIDATION.

Contract DCW
Evidence 1 Evidence 2 Evidence 3

FP FN
Associated Contracts Recipients Deploy Length2 Origin GT C

GT C1 GT C GT C GT C

C-98f804 W-521058 461,015 461,015 1 1 987,360 987,360 1 1 2 2 0 0
C-6113fB W-bceE76 1 1 1 1 2 2 1 1 1 1 0 0
C-Fd562c W-82f98B 3 3 1 1 6 6 1 1 1 1 0 0
C-2e14CC W-2499E7 3 3 1 1 6 6 1 1 1 1 0 0
C-8f428e W-b10f4B 2 2 1 1 4 4 1 1 1 1 0 0
C-18B228 W-3CD202 406,559 406,560 1 1 1,626,234 1,626,236 1 0 1 2 4 1
C-805a29 W-6629BA 2 2 1 1 4 4 1 1 1 1 0 0
C-078228 W-2b0878 2 2 1 1 4 4 1 1 1 1 0 0
C-0E712A W-09739F 1 1 3 3 2 2 3 3 1 1 0 0
C-db7aFF W-187307 3 3 3 3 7 7 3 3 3 3 0 0
C-70aae3 W-1AB876 4 4 2 2 10 10 2 2 4 4 0 0
C-e18895 W-5FFDdc 183,108 183,109 1 1 549,324 549,326 1 1 1 1 3 0

Total 12 1,050,703 1,050,705 17 17 3,162,963 3,162,967 17 16 18 19 7 1
1: C is short for Cybertrack.
2: Deploy Length refers to the number of accounts involved in the deployment of a contract.

This column shows sum of Deploy Length of all associated contracts.

4.3. Capability Attribution

Columns 11-12 illustrate the performance of
Cybertrack regarding to the generation of Evidence 3 . As
presented in Total row, Cybertrack has successfully
grouped 18 associated contracts into attributed capabilities
from the 12 fraud contracts. Nonetheless, our verified
ground truth indicates 19 such groups. Further scrutiny, as
discussed in relation to the earlier FP incident detailed
in §4.1, reveals that during the analysis of the transactions
originating from the fraud contract C-36FFaE (show on
Row 6 of Table 3) Cybertrack included contract C-2C4691
because it was designated by C-36FFaE to carry out the
deployment of fraud contracts. Since C-2C4691 operates
as a multi-signature wallet contract, Cybertrack
mis-classified it as a separate attributed group. It’s
important to note that the FP in Evidence 3 generation is
intrinsically linked to the FP in Evidence 1 generation.
The FBI agents, by identifying and excluding C-2C4691
from the forensic analysis of DCW, can eliminate this
error in the generation of Evidence 3 as well.
Considering the minimal occurrence of FPs and FNs,
coupled with an accuracy rate of 90.91% , Cybertrack is
validated as an effective tool for generating the three
pieces of evidence of DCW that FBI agents require to
mitigate the fraudulent activities.

5. Evaluation

In this section, we will demonstrate the effectiveness
of Cybertrack in uncovering the impact of DCWs.
Specifically, We applied Cybertrack to analyze 157 verified
fraud contracts using labeled contracts from Etherscan [3],
to emulate the investigative processes faced by FBI agents.

5.1. Post Deployment Dataset Highlights

Deploying Cybertrack on our dataset revealed an
unnerving trend in fraudulent activities perpetrated through
smart contracts. Given 157 flagged smart contracts on
Etherscan [3], Cybertrack uncovered a total of 1,283,198
associated contracts from 91 behind these contracts. The
distribution of these associated contracts is presented in
Figure 4. Furthermore, as highlighted under Profit (ETH)
in Figure 4, Cybertrack assessed the impact of these
fraudulent activities by calculating the ETH equivalent of
the illicit profits garnered by DCWs. Specifically,
Cybertrack determined that DCWs amassed a total of
2,638,752 ETH in illicit profits, averaging 2.06 ETH per
contract. Interestingly, Figure 4 also reveals a strong
correlation between the number of associated contracts and
the profits accruing to DCWs. This suggests that rather
than relying on a small number of contracts, DCWs are
more inclined to distribute risk across various fraud
contracts. The tactics of DCWs reflect the effectiveness of
current mitigation strategies, such as flagging, in
influencing DCWs’ operations.
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Figure 4: Distribution of associated contracts and illicit ETH
profits across DCWs.
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TABLE 4: TOP 10 DCWS THAT MADE MOST ILLICIT PROFIT THROUGH FRAUD CONTRACTS.

DCW Start
Time

End
Time

Fraud
Transaction Volume ETH USD Victim

Min Max Avg Total w Cybertrack

W-521058 Oct 2017 Jun 2023 1,240,355 1,384,080,119 1 2,978 471 232,011 209,926%

W-3cd202 Feb 2018 Jun 2023 280,053 192,665,735 1 2,842 303 173,469 113,519%

W-3a3250 Sep 2017 Jun 2023 447,891 141,686,276 2 5,756 295 74,074 116,699%

W-4b2c9b Nov 2017 Jun 2023 13,605 9,639,322 1 99 16 5,833 5,382%

W-9989f8 Apr 2018 Jul 2018 16,706 7,976,355 1 5 0 43 1%

W-ec1ef1 Aug 2022 Feb 2023 976 1,374,083 1 714 67 14,489 0%

W-82f98b Apr 2022 May 2022 416 1,224,971 1 14 5 93 1%

W-e058d6 Dec 2020 Feb 2021 931 1,138,740 1 11 2 130 17%

W-2499e7 May 2022 May 2022 432 901,275 1 8 4 51 2%

W-f09117 Sep 2017 Sep 2017 1,163 394,444 1 19 3 26 0%

Summary Sep 2017 Jun 2023 2,002,533 1,741,081,326 1 5,756 232 493,068 445,556%

5.2. Impact Of DCW

Table 4 presents the top 10 DCWs with the highest
fraud profit that have been identified by Cybertrack.
Column 1 shows the abbreviation of each DCW. Columns
2 and 3 display the start and end dates of its fraudulent
activities, respectively. Column 4 details the number of
fraudulent transactions associated with each DCW outlined
in Column 1, arranged temporally. Column 5 indicates the
aggregate quantity of ETH illicitly appropriated by each
DCW. Considering the objective of DCW is to generate
real-world currency profits, Cybertrack converts the stolen
ETH into USD, based on the exchange rate at the time of
each transaction; this converted amount is reflected in
Column 6. Beyond assessing the economic impact to
indicate the extent of the fraudulent activities, FBI agents
should also consider its severity based on the number of
affected individuals. In support of this, Cybertrack
identifies the associated contracts and their corresponding
transactions, subsequently determining the origin of each
transaction. Such origins are used as the estimation of
victim accounts. Columns 7 through 9 show the minimum,
maximum, and average number of distinct victims engaged
with DCW detailed in Column 1 on a daily basis. Column
10 provides a total victim count. To underscore the
significance of Cybertrack, we compared the efficacy in
victim identification by FBI agents solely from reported
fraud contracts against the enhanced forensics capabilities
equipped by using Cybertrack.

Table 4 provides insights into the operations of
fraudulent activities conducted via smart contracts.
Column 2 reveals that, out of 10 analyzed by Cybertrack,
the inception of such fraudulent activities dates back 5
years ago to Sep 2017, which is merely 2 years
subsequent to Ethereum’s introduction [34]. This
highlights the long-standing presence of fraudulent
undertakings within the Ethereum network. It was
anticipated that this prolonged history of fraudulent acts

would have garnered the attention of law enforcement and
government agencies, prompting them to initiate
countermeasures. Unfortunately, when we examine
Column 3 of Table 4, it becomes apparent that 4 out of 10
(40.00%) remain active up to the date of this study (shown
as Jun 2023 in Column 3 of Table 4). For example, Row
1 of Table 4 illustrates that the fraud led by W-521058 has
persisted for 5 years. Considering the observed efforts by
government agencies (e.g., the FBI) to combat general
cryptocurrency fraud [19], it is clear that the stealth and
complexity of smart contract-based fraud have out paced
the investigative capabilities of legal authorities.

The enduring presence of DCW, coupled with
inadequate investigative approaches, has led to the rampant
of these fraudulent activities. An examination of Column 4
of Table 4, which details the daily transaction volume of
DCW listed in Column 1, yields several notable
observations: (1) As evidenced by Rows 1-4 of Table 4,
substantial DCW do not opt for discretion; instead, they
exhibit consistently high volumes of fraudulent
transactions on a daily basis. (2) Although the transaction
volume for less aggressive DCWs may vary, as depicted
by Rows 5-10 of Table 4, their relatively brief duration of
activity still demonstrates a significant level of traffic.

The high volume of fraudulent transactions directly
correlates with the substantial profits these DCWs yield.
Columns 5 and 6 of Table 4 demonstrate that the foremost
10 DCWs have collectively garnered 2,002,533 ETH
($1,741,081,326) in illicit profits. In reviewing Row 1 of
Table 4, it becomes evident that the most profitable
scheme, conducted by W-521058, has amassed 1,240,355
ETH ($1,384,080,119) in unlawful earnings, accounting
for 61.94% of the total ETH and 79.50% of the total USD
accumulated by these 10 leading DCW.

Till now, it is clear that fraudulent activities facilitated
by smart contracts represent a critical issue, especially
considering the substantial illicit profits they have accrued.
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TABLE 5: TOP 15 FRAUD CONTRACTS IDENTIFIED BY CYBERTRACK THAT MAKE HIGHEST ILLICIT PROFITS.

Contract Start
Time

End
Time

Daily
Revenue

ETH USD

Min Max Avg Total Min Max Avg Total

C-cd154b Oct 2017 Jun 2023 0.005 8,364 147 304,772 8.690 5,847,875 99,874 206,240,342

C-cc1d68 Feb 2018 Jun 2023 0.060 1,238 53 105,061 52.057 2,402,960 49,762 97,036,980

C-2f9ffe Oct 2019 Jun 2023 0.004 666 42 57,385 7.383 1,029,244 60,650 81,635,779

C-e00b88 May 2021 Jun 2023 0.040 609 37 28,453 99.679 1,267,433 90,000 68,040,043

C-e2985f May 2021 Nov 2022 0.010 14,344 47 25,599 29.309 23,519,179 84,345 45,546,477

C-f03cef Mar 2022 Jun 2023 1.864 613 54 25,596 2236.746 955,632 82,739 39,053,042

C-6f5365 Dec 2019 Jun 2023 4.060 559 15 19,762 593.342 716,962 15,858 20,346,288

C-cedd45 Nov 2021 Jun 2023 0.095 397 32 19,610 410.665 1,161,698 64,659 38,795,418

C-5e0679 Dec 2017 Nov 2022 17.958 450 10 18,689 10,977.451 756,184 11,387 20,543,033

C-3c2551 Nov 2017 Nov 2022 0.630 192 9 16,629 640.500 606,352 22,067 40,074,910

C-af45d2 Nov 2022 Nov 2022 14,592 14,592 14,592 14,592 17,733,852 17,733,852 17,733,852 17,733,852

C-3c9b11 May 2021 Jun 2023 4.992 199 13 10,420 9,148.109 690,314 27,946 21,798,422

C-49c546 Apr 2021 Dec 2022 0.545 268 15 9,697 2,421.490 675,311 41,793 25,828,472

C-47961f Oct 2021 Jun 2023 1.000 500 14 8,627 3,971.950 937,348 27,819 16,858,621

C-b65ed7 Nov 2017 Jun 2023 0.295 232 4 8,322 94.204 177,506 3,027 6,211,922

Summary Oct 2017 Jun 2023 0.004 14,592 325 673,221 7.383 23,519,179 360,436 745,743,608

Alarmingly, the situation may escalate when considering
the number of victims impacted by these DCWs. Columns
9-10 of Table 4 detail the minimum, maximum, and
average number of daily victims for the top 10 DCWs. A
closer look at Column 10 of Table 4 reveals that the total
victim count ensnared by these fraudulent operations could
stand at 493,068. Focusing on Row 1 of Table 4, we find
that the fraudulent activities conducted by W-521058 has
affected 232,011 individuals, which represents 47.05% of
all identified victims. When comparing Columns 5-6 with
Column 10, it becomes apparent that, on average, each
victim has lost 4.06 ETH ($3531.12) to these DCWs. We
have thus demonstrated that fraudulent activities executed
via smart contracts are a great concern, both in terms of
the illicit profits and the number of victims affected. To
further underscore the need for more proactive forensic
analysis, Column 11 of Table 4 shows the potential
increase in identified victims by using Cybertrack.
Specifically, the difference between victims from reported
contracts and the total number involved in the fraudulent
activities. The Summary row highlights an average gain of
445,556% additional victims, reinforcing the importance of
integrating Cybertrack into DCW fraud forensics.

5.3. Drill Down Into Fraud Contracts

We have established that the illicit profits and the
number of victims involved in the fraudulent activities can
easily reach $1,741,081,326 and 493,068, respectively, as
detailed in §5.2. However, it reamins unclear that on the
finer granularity, whether the smart contracts driving these

frauds exhibit similar transaction pattern (e.g., volume) or
profit margin analogous. To address this gap, we delve
deeper into the contracts in the following section. Table 5
lists the top 15 fraudulent contracts, ranked by the highest
illicit profits, as identified by Cybertrack. Column 1
displays the abbreviation for each contract, and the readers
interested in the full address can refer to Table 6. Columns
2-3 outline the start time and end time of the fraudulent
activities for each contract, respectively. Column 4
presents the daily fraudulent transaction volume timeline
for contract in Column 1. Columns 5-7 show the daily
illicit ETH profits for each contract in Column 1,
formatted as Minimum (Min), Maximum (Max), and
Average (Avg). Column 8 tallies the total amount of ETH
each contract has accumulated from the transactions of
victims. To further quantify the impact of these fraud
contracts, Cybertrack has converted the ETH amounts into
USD based on the historical exchange rates at the time of
each transaction. The corresponding USD profits are
exhibited in Columns 9-12. Specifically, Columns 9-11
detail the daily USD profits, while Column 12 aggregates
the total USD revenue accrued by each contract
throughout its period of activity.

Table 5 provides interesting insights into the fraud
contracts that direct fraudulent activities orchestrated by
DCWs. As discussed in §5.2, we observed that fraudulent
activities tend to have an extended duration of activity.
Meanwhile, an examination of Columns 2-3 in Table 5
indicates that 14 out of 15 contracts (93.33%) have
sustained fraudulent activities for over a year. This
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observation could be attributed to the immutable
characteristic of blockchain technology. Specifically, once
fraud contracts are exposed, their perpetrators might not be
concerned about the contracts being terminated. Intuitively,
one might assume that these fraud contracts would exhibit
a consistently high volume of fraudulent activity since the
orchestrators do not have to worry about the contracts
being dismantled. Surprisingly, Column 3 of Table 5
reveals that the contracts on Rows 4, 8-10, 14-15 of
Table 5 (40.00% of the top 15 contracts) undergo a
significant period of dormancy before experiencing a
resurgence of fraudulent activities. This pattern suggests
that, regardless of their lack of concern over contract
removal, orchestrators still take measures to prevent the
fraud contracts from being detected.

Upon reviewing Columns 8 and 12 of Table 5, it
becomes evident that the top 15 contracts have collectively
accumulated illicit gains of 673,221 ETH ($745,743,608).
It is important to note that the USD profits are calculated
using the historical ETH-to-USD exchange rate
corresponding to the dates of the fraudulent transactions.
Considering the extended duration of the fraudulent
activities and the rising value of ETH, it is conceivable
that the perpetrators might realize even greater profits if
they were to liquidate their ETH holdings at current
market prices. Delving deeper into the profit analysis, a
focus on Columns 7 and 11 of Table 5, which outline the
average daily ETH and USD profits generated by the
contracts listed in Column 1, reveals that periods of
dormancy have not impeded the substantial accumulation
of profits by the orchestrators. Referencing Table 5, it is
evident that with the aid of Cybertrack, FBI agents can
ascertain that the average daily profits of the contracts
amount to 325 ETH and $360,436. These figures constitute
2.23% and 1.53% of the maximum daily profits,
respectively. The data highlighted here underscore the
orchestrators’ proficiency in sustaining a regular flow of
illicit revenue, navigating even through sporadic phases of
dormancy. This revelation amplifies the gravity of
fraudulent activities facilitated by smart contracts and
underscores the urgency to deploy Cybertrack for
comprehensive forensic analysis.

6. Case Studies

6.1. Case Study 1: Contracts Shared By DCWs

Instead of writing customized fraud contracts for
themselves, deploying Cybertrack on the dataset
surprisingly revealed contract reuse across different DCWs.
Specifically, Cybertrack identified a total of 3 different
bytecodes used by 7 DCWs, involving 16 contracts. The
naive FBI agents would assume that contracts sharing the
same bytecode would execute same transactions. This
assumption would be valid if these contracts shared the
Forced Transfer capability, which means that hardcoded
recipients are in the code. Interestingly, Cybertrack
reported that these 16 contracts are all equipped with the

Dynamic Recipient Resolution capability. For example,
Cybertrack observed that the contracts could execute
SLOAD to load an address from the 6-th storage slot. Then,
the loaded result would be utilized as the recipient in the
fraudulent transactions. By performing Recipient
Provenance Analysis, as detailed in §3.2, Cybertrack
discovered that the 6-th storage slot consistently hosted the
address of the creator. Consequently, even though these 16
contracts share 3 unique bytecodes, they still engaged in
different transactions.

6.2. Case Study 2: Abuse Of CREATE2

Beyond merely scrutinizing the overarching fraudulent
activities orchestrated by DCWs, deploying Cybertrack
also enables a detailed examination of their technical
evolution. During the analysis of W-521058, who has
collected around 1,250,355 illicit ETH profit, Cybertrack
observed an evolution from manually fraud contract
deployment to an automated fraud contract deployment
given C-48d304 with Contract Self-Replication.
Compounding this issue, during the analysis of C-48d304,
Cybertrack discovered that instead of using the CREATE
opcode, the DCW employed CREATE2. The CREATE
opcode computes the address of the deployed contract
using Keccak256 [28] on sender and nonce where
sender is the address of sender and nonce represents the
number of transactions originating from the sender’s
address. Although CREATE’s functionality is deterministic,
predicting the address of the deployed contract remains a
challenge since it relies on the on-chain data, nonce. In
contrast, instead of using nonce, the CREATE2 opcode
facilitates the creation of contracts with a deterministic
address by using salt, which could be arbitrarily defined
in the transaction. This feature allows DCWs to predict the
address of the yet-to-be-deployed fraud contract without
even accessing the blockchain. Consequently, DCWs could
lure victims into transacting with a ’non-existent’ fraud
contract [32]. At such a juncture, discerning the malicious
nature of the contract becomes exceedingly challenging for
the victims, as it is yet to be deployed. To substantiate this
hypothesis, we observed that all 65,530 fraud contracts
had victim transactions occurred prior to the actual
deployment of the fraud contract.

7. Related Work

7.1. Fraud Detection On Blockchain

Ponzi Scheme. Yu et al. [4] utilized graph convolutional
networks to detect Ponzi schemes using transactions,
whereas Zhang et al. [11] improved on the LightGBM
algorithm for better detection efficacy. Extracting bytecode
features [12] and leveraging text convolutional neural
networks [13] have also been proposed to identify
Ponzi-like characteristics in smart contracts. There are also
works using opcode compression for vulnerability
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detection [14], and identifying static features within smart
contracts for Ponzi scheme classification [15]. Techniques
using opcode sequences [16], code analysis [17], and
enhanced convolutional neural networks [5], [18] have also
been implemented to identify Ponzi scheme.
Fraud In General. Beyond Ponzi schemes, the broader
fraud detection on blockchain is tackled through various
innovative approaches. Liu et al. [7] utilized a
Heterogeneous Information Network to model smart
contracts and apply graph Transformer networks to detect
abnormalities. Machine learning algorithms, such as
XGBoost and Random Forest, have been employed by
Ashfaq et al. [8] to classify Ethereum transactions and
detect anomalies like double-spending and Sybil attacks.
Furthermore, Hu et al. [9] explored deep learning models
to identify scams on a large scale by examining the
n-gram features of byte. Notably, the identification of
fraud contracts acts as the input for Cybertrack, enabling it
to generate evidence that assists FBI agents in obtaining
legal authorization and implementing mitigation strategies.

7.2. Smart Contract Vulnerability

Luu et al. [20] were among the first to address the
security risks in smart contracts by identifying security
pitfalls. Symbolic analysis has been frequently used for
detecting such vulnerabilities; Krupp and Rossow [21]
developed techniques for automatically exploiting smart
contracts by analyzing bytecode. Similarly, Zeus [22], a
framework for the symbolic verification of smart contracts,
uses Constrained Horn Clauses to identify vulnerabilities,
an approach also adopted by others [23], [25]. With the
rising complexity of smart contracts, especially those
involving multiple contracts, Ma et al. [24] proposed an
inter-contract analysis tool, while others have focused on
state inconsistency bugs [26]. Online detection methods
have also been investigated, such as SODA [35], an online
detection framework for smart contracts.

Recent works have shifted towards leveraging machine
learning to enhance the detection process. Sendner et al.
[36] introduced ESCORT, a method employing deep
learning to identify different types of smart contract
vulnerabilities. There are also works utilizing dynamic
analysis [37], deep learning [38], and pre-training
techniques [39] to identify the smart contract
vulnerabilities. Others have focused on static analysis rules
tailored to specific blockchain platforms, like VRust for
Solana smart contracts [40], or on defining critical paths to
address fund transfer vulnerabilities [41]. Moreover,
combining expert knowledge with graph neural networks
has shown promise in enhancing detection capabilities
[42]. Another notable approach is the analysis of confused
deputy vulnerabilities in Ethereum smart contracts [43],
which highlights the importance of understanding security
challenges in contract interactions. Contributing to a
different domain, Cybertrack conducts forensic analysis on
fraud contracts, producing the evidence for FBI agents to

obtain legal authorization and execute mitigation strategies.

8. Discussion
Ethical Concerns. In this paper, we address the ethical
considerations associated with the forensic analysis
executed by Cybertrack. The data utilized in this analysis
is sourced exclusively from the public domain, specifically
Ethereum. Subsequent to the forensic investigation,
remedial actions are undertaken through a concerted effort
with service providers (for instance, Etherscan [3]) and
relevant governmental agencies. Throughout the process of
remediation, we adhere to the established guidelines and
the terms of service stipulated by these service providers
as well as government agencies. We do not attempt to take
any exploitative actions on our own.
Challenges of Symbolic Analysis. Cybertrack, leverages
symbolic analysis, a technique adopted by top-tier
research [44]–[48]. While symbolic analysis often faces
the challenge of path explosion, our evaluation in §5
reveals this to be a rare issue in smart contract analysis.
This is likely because smart contract execution involves a
cost, known as ’gas’, leading malicious actors to prefer
simpler contract designs.
ERC-20 & NFT. Cybertrack primarily focuses on the
forensic analysis of fraudulent activities involving the
scam of ETH. ERC-20 [49] and Non-Fungible Tokens
(NFTs) [50] have emerged as extensions built upon the
Ethereum. ERC-20 tokens provide a standardized protocol
for fungible tokens, ensuring consistency in token
interactions. Non-Fungible Tokens (NFTs), in contrast,
represent unique digital assets, each characterized by
distinct metadata and individual ownership records. Even
though both token standards are implemented through
smart contract, forensic analysis of ERC-20 and NFT
requires distinct approaches. In particular, both transaction
and program analysis offer limited insight into the complex
behaviors associated with these tokens. While ETH
transfers are directly recorded as transactions, exchanges
of ERC-20 tokens or activities like NFT minting and
ownership transfer are typically reflected as internal state
changes within the contracts themselves. Additionally, the
value of NFTs is often influenced by external, off-chain
factors, further complicating the analysis.

9. Conclusion

Applying Cybertrack to 157 Etherscan-flagged
contracts [3], our research identified 1,283,198 associated
contracts across 91 DCWs. These frauds have accrued
2,638,752 ETH ($2,089,504,682) in illicit profits,
averaging 2.06 ETH ($1628.36) per contract. Alarmingly,
Cybertrack revealed that these frauds date back to
September 2017. Notably, our research found that
scammers tend to employ multiple fraud contracts to
distribute the risk, suggesting the efficacy of current
flagging mitigation strategies upon scammers. In response,
we are actively collaborating with Etherscan [3] and the
FBI [27] to to take actions based on our findings.
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Appendix

1. Start Of Fraudulent Campaign

As highlighted in §2.2, FBI agents were notified with a
fraud contract C-98f804 associated with a scam message
on Telegram [29]. Further investigation into this message
led agents to uncover similar content on other platforms, as
shown in Figure 5 and Figure 6, reinforcing the message’s
fraudulent nature.1 Reply    

MajorJS1  

2 je odgovorio    0  

@neworder Mozes mi objasniti ovo : 
Before we distribute airdrop we also want to reward you guys with this selfdrop you can get it instantly. please
only send ETH once to the sales address.

Send any amount of this ETH to our sales address: 0x70305B080eFc49eB5DFb9bdA78Aea516c398f804

0.005 ETH and get 600 SUB 
0.05 ETH and get 1,500 SUB 
0.5 ETH and get 3,000 SUB 
1 ETH and get 5,000 SUB 
sanjihovog je kanala , sad mene zanima Trebao bi neki wallet skinuti? Ali jos bitnije jeli scam ovo ili nije posto
san naletio na tweet od substratuma da nemaju trenutno nikakvih airdropova

 

NewOrder  

  0  

@majorjs1 
ma nisam proučavao. Obično niti ne ulazim u detalje, previše vremena bi potrošio. 
U pravilu, čim traže novce za airdrop preskačem i idem dalje. Možda je i scam, ne bih se iznenadio. Ima ih dosta. 
Ako traže da skinem neki njihov wallet, produžim dalje. Ne isplati se riskirati. 
S obzirom koliko novaca se kao nudi, lako moguće da je navlakuša i scam.

NewOrder 

  0  

@majorjs1 7

yep. it's a scam

M

M

N

N

N

Figure 5: Scammers post the fraudulent message on forum.
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Figure 6: Scammers post the fraudulent message on X.com.
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2. Full Forms Of Abbreviations

On Ethereum, accounts (i.e., wallets and contracts) are
identified by 40-character hexadecimal strings known as
addresses, while transactions are distinguished by
64-character hexadecimal strings, termed transaction
hashes. To improve the readability, we use abbreviations
comprising the last 6 characters of addresses and
transaction hashes in the paper. Full forms of these
abbreviations are presented in Table 6.

TABLE 6: MAP ABBREVIATION TO FULL FORMS.

Abbr Full Forms

Contract
C-98f804 0x70305b080efc49eb5dfb9bda78aea516c398f804
C-48d304 0x5BE1De8021cc883456FD11DC5CD3806dBc48D304
C-6113fB 0xf97Bd29b8eE6E246Eb57eEcf5D0E8486366113fB
C-Fd562c 0xefef14C36C1F2de2ca3772Ba9539B6A58cFd562c
C-2e14CC 0xcB3315A42E76b70D2f3e8E595a5d13855c2e14CC
C-789332 0xcf50193c27DF08423BFe813676541B2268789332
C-D986ae 0x8014FB4882b1f99a3E60AEce1d39400560D986ae
C-6786ae 0x8014ae6574CAcE1f2435a86d4ea0472f466786ae
C-2D3B2f 0x65a8135596AE13C0Dd5c17bA1059C61Bc42D3B2f
C-D3c82b 0xDD499857c8539bEF04477B52782bE6A9FbD3c82b
C-159624 0xCC326C1D41f64c5331bc7Ba555d75306C3159624
C-8f428e 0xA77db707916aDEff81042ca57656931CcD8f428e
C-805a29 0x5F856630adBC27c0F5bC1DE1961D4f0fB1805a29
C-078228 0x1bd913BBaDE46bF5AD8b1e5d117701fBEb078228
C-0E712A 0xc25ab34E7F3a1eb2C6a3a23DF851F351df0E712A
C-a5f260 0xEb411D5Df13AC7020992306e78955fb7CBa5f260
C-db7aFF 0xBCC6C0feF89b87a12773Db7a9a8ECBCCCcdb7aFF
C-18B228 0x95115419B09E8Cea70a9bdbCA3fEe8C5e118B228
C-57e2e8 0x890bcE348BAE449Df3783ba0E1C7eB82C557e2e8
C-4f99A8 0x6032D639E634E788FcE323B316E06d18194f99A8
C-a5CDE9 0x6574C0bF7F3D144F5837acC160773eC8f2a5CDE9
C-3D7D37 0x197e45d545F4DA0C3f15002222BcADDd9D3D7D37
C-70aae3 0x4a96e9b57a229d94c0c28950355A72Fa9e70aae3
C-CbEB9E 0xfdd46E0ea17622d70AdaE6535948776160CbEB9E
C-e18895 0x3cD6ef508c1c448e293075f1dE2ae96a49e18895
C-2C4691 0x5B9E8728E316bBEB692d22daaAB74F6cBF2C4691
C-36FFaE 0x131A99859a8bfa3251D899F0675607766736FFaE
C-1e3e4e 0xbf0c5d82748ed81b5794e59055725579911e3e4e
Wallet
W-521058 0x2E05A304d3040f1399c8C20D2a9F659AE7521058
W-bceE76 0x29203118cCbBF5277C1CEB49aF1333A91CbceE76
W-82f98B 0xd6E56a65f795Fd136406e668c0eB69360F82f98B
W-2499E7 0xA40b913D654D803b9833e9a699D5830f262499E7
W-b10f4B 0xF52426340e0548a8d58b970f2283e22c1bb10f4B
W-6629BA 0xD0E680D5141f6E61E953903736E3637a6E6629BA
W-2b0878 0xF7cC855E3BB2986729eC47c1B6f64e36aA2b0878
W-09739F 0x848a757656650c9950fb1Aed03eaC8A92209739F
W-223DcF 0xc2221f38dE2eB19125A5b77b5D82d5bFc7223DcF
W-187307 0x4005de995109895BE7Eac74346a62Db28b187307
W-3CD202 0x38c7eA86c8235b0CfCcFb91153259e85353CD202
W-297f83 0x7d3Bdf1b728386efDb9a3A0328a95D94b0297f83
W-15467A 0x7734aA368Df7bd09D2AbCBf925Cc92314A15467A
W-64EE46 0xfa32e18Cf5e9E96eDBa979f40DC55E465864EE46
W-1AB876 0xe3172Dc735B44893303e2fd22D1d3647271AB876
W-93abb5 0x9D31e30003f253563Ff108BC60B16Fdf2c93abb5
W-5FFDdc 0xd5e015739a8BEffF075C4eAA2013D27Df35FFDdc
W-13666c 0x058251232C086247cA91998472245D8Ae213666c
W-53C9dA 0x604Df452158e7ddF3E44338308EdC079a953C9dA
Transaction

T-8bbae5
0x58f6fb1d2440eb4d6d5ac64a152aa156d3850eff6b3-
56ab86904ac28758bbae5
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