
Hitchhiking Vaccine: Enhancing Botnet Remediation
With Remote Code Deployment Reuse

Abstract—For decades, law enforcement and commercial
entities have attempted botnet takedowns with mixed success.
These efforts, relying on DNS sink-holing or seizing C&C
infrastructure, require months of preparation and often omit the
cleanup of left-over infected machines. This allows botnet
operators to push updates to the bots and re-establish their
control. In this paper, we expand the goal of malware takedowns
to include the covert and timely removal of frontend bots from
infected devices. Specifically, this work proposes seizing the
malware’s built-in update mechanism to distribute crafted
remediation payloads. Our research aims to enable this necessary
but challenging remediation step after obtaining legal permission.
We developed ECHO, an automated malware forensics pipeline
that extracts payload deployment routines and generates
remediation payloads to disable or remove the frontend bots on
infected devices. Our study of 702 Android malware shows that
523 malware can be remediated via ECHO’s takedown approach,
ranging from covertly warning users about malware infection to
uninstalling the malware.

I. INTRODUCTION

Botnet takedowns have limited success in practice, with
ample real-world cases of how complex operations can easily
fail [1]–[5]. Traditional botnet takedowns rely on blocking and
sinkholing C&C servers. To aid this effort, the research
community proposed effective techniques for identifying C&C
servers [6] and disabling C&C infrastructure through DNS [7]
or taking over P2P botnets [8], [9]. Unfortunately, if incident
responders miss even a single C&C server during the
takedown, botnet operators can easily regain control by
pushing an update to the frontend bots [10]. The principal
limitation allowing botnets to survive takedowns is that
infected devices continue to run frontend bots and quickly
update to resume their operations [2], [11].

Seeking a different solution, this paper proposes that
takedown campaigns must not only block backend C&C
servers but more importantly, disable or remove frontend
malware. This approach puts malware operators at a
disadvantage: They must reinfect devices, which is the most
resource-demanding task for building a botnet. However,
existing solutions fall short of this goal. Paleari et al. [12]
proposed analyzing the frontend bots to enumerate artifacts
that must be removed during malware remediation.
TARDIS [13] and Shan et al. [14] restore clean backups of
infected systems to remove malware. Unfortunately, these
works rely on every infected device owner to perform the

remediation on their device. This is ineffective given that
device owners lack reliable sources to recognize the infection
and deploy remediation solutions. Ideally, remediation should
be deployed globally. However, this requires access to all
infected devices, making prior solutions unrealistic [4].

Interestingly, the insight to solving this challenge lies in
the bot’s implementation, namely remote payload deployment.
Instead of embedding malicious code in the malware, malware
fetches malicious payload hosted on C&C servers on
demand [15]. Previous studies [16], [17] have found that
malware assume full trust in their C&C servers. Besides
providing rapid code updates, payload distribution can also
easily evade static vetting systems since malicious logic is not
present until it is fetched [18], [19]. While beneficial to
malware operators, this tactic of modern malware also
inspired us: If incident responders can induce a global
removal “update” then they could inoculate the malware on
globally distributed victim devices.

In fact, recent legal developments [20] set a precedent that
newly enables this approach (see §VII). Incident responders
can now receive legal leverage during a lawful takedown
operation to remove the frontend malware from infected
devices, effectively eliminating the chances for a botnet
revival. Our research aims to formalize and automate this
necessary but difficult remediation procedure.

This paper presents ECHO, an automated pipeline for
remediating remotely-controlled malware by seizing and
reusing their payload deployment routines. ECHO takes a
malware sample as input. ECHO’s overall objective is to reuse
the remote payload deployment capabilities enabled by the
malware operators to remediate the malware. We first define a
fundamental model to represent the remote payload
deployment routine in a malware and enable remediation
payload generation (§III-A). Based on that model, §III-B will
extract all payload deployment routines in the malware that
are candidates for remediation payload generation. Next,
§III-C determines what influence each remediation payload
can have on the victim system when deployed inside the
malware. Combining all these findings, §III-D generates a
remediation payload template for incident responders.

As a proof-of-concept, we have implemented our ECHO
prototype for Android malware. Our prototype handles two
classes of payload deployment routines: 1) Remote Dynamic
Code Loading (RDCL) for Java binaries (JAR) and Android
class files (DEX and APK) and 2) JavaScript (JS) payloads
via WebView’s Javascript Interface (JSI). Remote payload
deployment is not exclusive to Android malware, and ECHO’s
methodology can be extended to remediate malware on any
platform, as detailed in §VI-B.
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In collaboration with <corporate collaborator>1, we
evaluated ECHO on a dataset of 702 Android malware that
potentially implement remote payload deployment techniques
(detailed in §IV). Our evaluation revealed that ECHO applies
to 523 out of 702 malware for remediation. ECHO’s
methodology can disrupt the malware’s execution or notify the
device’s user. Besides, ECHO discovers that 465 out of 580
RDCL malware (80.17%) can be disrupted with a generated
Java remediation payload. ECHO can also generate specific JS
payloads for 75 out of 170 (44.12%) malware with JSI
payload deployment routines. §V presents two case studies
highlighting how ECHO can be deployed by incident
responders to warn users and instruct them to remove the
malware. ECHO is available as open-source.2

II. MOTIVATION

Using the fake Youku malware3 as an example, we
demonstrate how incident responders can rapidly remediate
the malware with proposed approach. Our research found
seven malware samples that mimic popular Chinese video
streaming platforms, such as Youku, and iQiyi. Upon infecting
Android devices, these malware fetch malicious payloads from
http://***.itracker.cn:***, decode the binary, and execute the
malicious script. Consequently, malware operators can publish
codes on the C&C backends and execute arbitrary malicious
vectors on infected devices.

Isolating Remote Payload Deployment Code. As the first
challenge, to remediate this malware by reusing its remote
payload deployment capabilities, incident responders must
reverse engineer the malware sample and isolate the code
implementing the payload deployment routine. This requires
incident responders to decompile the binary and locate the
system APIs that handle fetching, loading, and executing the
remote payload. This task involves more than merely
searching for API calls, as these events use generic system
APIs that are also employed for other malware features. For
instance, network request APIs can be used for fetching
payloads or loading images. Incident responders must filter
false positives by globally tracking data dependencies,
pinpointing control flow logic, and combining execution traces
with sandbox context information to identify code for payload
deployment routines. As a result, incident responder may find
the fake Youku malware uses a complex scheme: it pulls the
payload from the C&C server and unzips it. After that, the
script is decoded from a JSON text file and executed. In this
case, incident responders cannot miss even a single event
along the remote payload deployment routine. Even worse,
code obfuscation techniques deployed by the malware
operators make this task even more challenging.

Remediation Capability Profiling. Simply replacing the
payload with arbitrary scripts is ineffective for remediation.
Incident responders must determine the correct code to
implement to invoke remediation capabilities. In general, the
payload can only invoke particular system APIs that are
available within the malware’s execution context. We define

1Redacted for anonymous submission.
2Code and dataset will be released upon acceptance in artifact evaluation.
3sha-256 hash: 5135210444ad90b3a0d5aa5bd64fb06fedae8b44d

0b35a6f7e14be6128b476cf, package name: com.youku.phone
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template = function(){
    // Variable to be updated by incident responders
    var urlToNotifyUser = "<notification_to_users>";
    var shouldNotifyUser = true;
    var shouldUninstall = true;
    // ECHO-generated payload deployment routine info
    var packageName = "tv.huohua.android.ocher";
    // context-switching interface info
    var jsiObjectName = "RequestInfoControllerBridge";
    var jsiExecApiName = "runCmd";
    // ECHO-generated code execution template
    // execute Linux shell command via context-swtiching interface 
    if(shouldNotifyUser){ //execute code to notify end user
    var cmdNotifyUser = "am start -a android.intent.action.VIEW
    -d " + urlToNotifyUser;
    eval(jsiObjectName + '.' + jsiExecApiName)(cmdNotifyUser)
    }
    if(shouldUninstall){ //execute code to uninstall app
    var cmdDelete = "am start -a android.intent.action.DELETE -d
    package:" + packageName;
    eval(jsiObjectName + '.' + jsiExecApiName)(cmdDelete)
    }
    }();

Fig. 1: Remediation Payload For Fake Youku Malware.

the term in-vivo influence to describe these system APIs that
the payload can reach within the malware’s execution context.
In the fake Youku malware, the payload is written in HTML
and JS and is executed within a WebView. The malware
implemented an interface function, named runCmd, which
passes its parameter to the system API Runtime.exec.
Because this interface can be invoked from the remote
payload, the malware operators can run arbitrary Linux shell
commands on the victim’s devices. Ideally, a remediation
payload would invoke this interface and execute Linux shell
commands to collect user consent and automate malware
removal. Unfortunately, to achieve this, incident responders
must reverse engineer the malware to 1) derive the possible
in-vivo influence to interact with the malware context,
2) analyze the remediation capabilities the payload can
leverage, and 3) draft remediation code accordingly.

Remediation Payload Generation. Finally, with the drafted
code for the remediation payload, incident responders must
generate a binary that can be hosted on the C&C server. This
involves traversing the malware’s payload deployment routine
and reversing the procedures. Without a pre-defined
specification, this task requires manual effort from incident
responders to tailor the payload for each case, potentially
slowing down the remediation process. Subsequently, incident
responders may collaborate with ISPs or DNS providers to
redirect the payload fetching traffic.

A. Incident Response With ECHO

To accelerate taking down malware, we propose ECHO.
ECHO provides an automatic pipeline for front-end malware
remediation. ECHO takes only the malware binary as input.

Delving into ECHO’s internal operation, we developed a
formal model for payload deployment routines within the
malware, as detailed in §III-A. ECHO automatically derives
this formal model from the Youku malware using program
analysis techniques, as detailed in §III-B. The formal model
abstracts each remote payload deployment event, including
binary downloading, unzipping, script file decoding, and script
execution. For each event, ECHO’s formal model captures
essential information to enable remediation, such as the C&C
server to be seized for payload deployment. Next, ECHO
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automatically detects the remote payload deployed in a
context-isolated sandbox (i.e., JS code executed in WebView).
ECHO identifies the in-vivo influence of the payload by
pinpointing the context-switching interface and the
remediation-capable APIs (see §III-C). ECHO saves incident
responders the effort of manually reverse engineering the
malware to collect this prerequisite knowledge for generating
the remediation payload.

With both the model representing the malware’s remote
payload deployment routine and the payload’s in-vivo
influence, ECHO generates a remediation payload template.
This is detailed in §III-D. For the Youku malware, ECHO
generated the template shown in Figure 1. The remediation
payload template reuses the runCmd interface to call
remediation-capable APIs to execute Linux shell commands,
as shown in Lines 9-10. Additionally, ECHO provides the
commands to be executed in Lines 14-15 and 19-20. The
payload template enables incident responders to choose the
remediation capability to be used and customize the code if
needed. For example, Line 3 of Figure 1 allows for adding a
URL to notify users about the infection. Based on the formal
model, ECHO provides specific steps to package and host the
payload on a specific C&C server URL. After using ECHO,
incident responders can customize this payload template, test
it before deployment, and redirect the C&C traffic to conduct
the remediation. We simulated this process for Youku in our
lab to display a warning screen, collect user consent, and
remove the malware in this demo video:
www.youtube.com/channel/UCXWT7OaYugn1vSIqeFoqdsw.

B. Thread Model

Frontend Malware. ECHO aims to remediate malware that
fetch and execute payloads from remote C&C servers.
Advanced malware operators periodically update their
malware and C&C servers, making it hard for incident
responders to block the C&C infrastructure entirely. The delay
between updates depends on each malware’s implementation.
Therefore, ECHO has per-device variable latency, which we
further discuss in §VI.

Victim Device. We assume the victims are devices infected
by frontend malware. Incident responders can not access the
globally distributed victims physically. Victims routinely install
security mechanisms (e.g., antivirus) but still become infected.
As such, incident responders can not rely on end-host security
mechanisms.

Incident Responder. This paper uses the term “incident
responders” to represent legally authorized entities that can
coordinate with stakeholders, such as internet service
providers (ISPs), for malware remediation. For example,
Microsoft and Google have both received legal permission to
deploy targeted code on victim devices to remove botnets [21],
[22]. As another example, during the Retadup takedown [23],
the French Police hired Avast to painstakingly manually
perform a remote frontend malware removal, similar to
ECHO’s motivation. ECHO is designed to support such cases.
§VII discusses the legal and ethical cases where ECHO is
necessary. We assume that incident responders can capture a
malware sample from a reliable source, e.g., antivirus
software, user reports, or trustworthy vendors.

III. ECHO’S METHODOLOGY

A. Deployment Routine Formal Modeling

This research proposes a generic approach to malware
remediation: reusing the remote payload deployment routine
via remediation payload generation. Achieving a generic
solution, however, remains an open research challenge due to
the arbitrary freedom malware authors have in implementing
remote payload deployment routines. Despite the diversity in
code implementations, malware must conform to lifecycle
stages to fetch, load, and execute remote code. Moreover,
these lifecycle stages must exhibit specific data dependencies
and control flow within and between each stage.

To this end, to accomplish ECHO’s objective, we propose
a graph-based formal model to abstract the malware’s remote
payload deployment routine. §III-B will find every remote
payload routine implemented by a malware sample and
instantiate ECHO’s formal model for each, using a
combination of binary program analysis techniques. Notably,
ECHO’s formal model identifies the payload’s entry point
method, which transfers execution from the malware’s code to
the payload. §III-C will utilize the formal model’s entry points
to find the reachable remediation capabilities. §III-D will
leverage ECHO’s formal model to generate the remediation
payload template, facilitating the customization, packaging,
and deployment of the remediation payload.

Overall, ECHO models malware’s remote payload
deployment routine with a directed acyclic graph, denoted as
G. Each payload deployment-related event (represented by
API calls and code sequences) is modeled as an annotated
vertex (v ∈ V ). Edges, denoted by e ∈ E, represent the
execution path between two vertices with data dependency
information. ECHO further uses Assertions for each edge to
rule the conditions to be met by the remote payload when
being deployed by the routine. The following details the
vertex and edge definitions and how they construct the
model’s graph.

1) Annotated Vertices: ECHO models a vertex from a
payload deployment-related event, which is either a system
API call (e.g., network request sending call) or recursive code
sequences (e.g., recursively decoding payload bytes in a
fixed-length buffer). These concrete APIs or code sequences
are denoted as v.api. Additionally, ECHO models each vertex
with context information correlated to the API calls, named
vertex annotations. These annotations are dynamically
collected or resolved from the runtime sandbox context and
represent vertices’ runtime state. With payload fetching,
loading, and execution as the three essential lifecycle stages
for payload deployment routines, Table I lists ECHO-defined
vertex types for each stage. Columns 1 and 2 show the vertex
type and the symbol. Columns 3 and 4 list the vertex
annotations and their symbols. ECHO also defines edge-in and
edge-out assertions corresponding to each vertex type in
Columns 5 and 6 respectively, which we will discuss further
in §III-A2.

In the payload fetching stage, ECHO models events related
to malware sending network requests (vfreq) and handling
responses (vfres), as shown in Rows 1 and 2 in Table I.
Alongside these vertices, ECHO collects information about the
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TABLE I: Definition Of Payload Deployment Routine Vertices, Vertex Annotations, And Edge Assertions.

Vertex Type Vertex
Symbol Vextex Annotations Annotation

Symbols Edge-In Assertion1,2 Edge-Out Assertion1,3

Payload Fetching Stage

Network Request Sending
vf
req

backend URL url
N/A (Root Node) v.url ̸= ϕ ∧ v.s = vsnk.s ∧communication protocol p

HTTP Session s typeof(vsnk) = vf
res

Request Response Handling vf
res

response headers h
typeof(vsrc) = vf

req ∧ v.h.state = success ∧
response content/binary b v.b ̸= ϕ ∧
HTTP Session s v.s = vsrc.s v.b = vsnk.b

Payload Loading Stage

Write Binary to File vl
fw

file path fp
v.fp ̸= ϕ ∧ v.b = vsrc.b

fileExist(v.fp) ∧
file binary b vsnk.fp = v.fp

Read Binary From File vl
fr

file path fp fileExist(v.fp) ∧
b ̸= ϕ ∧ v.b = vsnk.bfile binary b v.fp = vsnk.fp

Binary Decoding vl
dec

decoding algorithm alg
v.bpre = vsrc.b ∧ v.bpst ̸= ϕ ∧decoding key k

pre-decoding binary bpre (¬v.alg.needsKey ∨
bpst = vsnk.bpost-decoding binary bpst v.k ̸= ϕ)

Binary Segmentation vl
seg

segmentation index idx
v.bpre = vsrc.b ∧

v.bpst = vsnk.bpre-decoding binary bpre
post-decoding binary bpst v.idx ̸= ϕ

Integrity Verification vl
verify

algorithm alg
v.alg ̸= ϕ ∧

v.res = true
key or hash k
binary b

v.b = vsrc.b ∧ k ̸= ϕverification result res

Payload Execution Stage

Script Code Execution ve
sce

script binary b v.b = vsrc.b ∧
methodCalled(v.epm)entry point method epm scriptExecutable(v.b) ∧

context-crossing interfaces i methodDefined(v.epm)

Binary Code Loading ve
bcl

binary b v.b = vsrc.b ∧ typeof(vsnk) = ve
exe ∧

compiled class cls binaryCompilable(v.b) cls ̸= ϕ ∧ v.cls = vsnk.cls

Entry Point Method Execution ve
exe

compiled class cls v.cls = vsrc.cls ∧
methodCalled(v.epm)entry point method epm methodDefined(v.epm)

1: We use v in edge-in and edge-out assertions to represent this vertex to distinguish it from the other vertex in a potential edge.
2: We use vsrc in edge-in assertions to represent the source vertex of a potential edge going into this vertex.
3: We use vsnk in edge-out assertions to represent the sink vertex of a potential edge out of this vertex.

C&C hosts and the raw payload from the response. For the
payload loading stage, ECHO models all payload-manipulating
vertices. These vertices encompass the fundamental events in
which the malware converts the raw responded payload into
executable binary code. Specifically, such events include file
I/O (vlfr and vlfw), decoding (vldecode), segmenting (vlseg), and
integrity verifying (vlverify) as shown in Rows 3-7 in Table I.
For the payload execution stage, ECHO models payload
execution events for code written in both script languages
(e.g., JS, Python) and compiled languages (e.g., C++, Java).
For script-based payloads, ECHO models the script code
execution APIs (vesce). Additionally, for pre-compiled
payloads, ECHO models the system APIs responsible for
interpreting the payload into executable code (vebcl) and the
event of executing it (veexe). In both cases, ECHO identifies
the API implemented in the remote payload that is called
from the malware’s original code when the payload is
executed. These APIs are referred to as entry point methods.
ECHO leverages entry point methods to identify the in-vivo
influence for the remediation payload, as detailed in §III-C.

2) Data Dependency Edge With Assertions: ECHO uses
a directed edge to model the data dependency between two
vertices. An edge is defined as e = {vsrc, vsnk, d}, where
vsrc and vsnk represent the source and sink vertices and the
data dependency context between two vertices (d). The data
dependency represented by an edge can be a shared binary,

pointer, or file path referring to the same data used by two
vertices. As an example, for an edge representing the malware
firstly handling a network response (vfres) and then writing the
file to local storage (vlfw), the binary shared by both vertices
is considered the data dependency context d on the edge.

However, the existence of a data dependency d between
two vertices does not guarantee that this path can be satisfied
during remediation payload deployment. To solve the above
challenge, ECHO’s model represents pre-defined conditions as
edge-in assertions for the sink vertex and edge-out assertions
for the source vertex. Table I shows these assertions for each
vertex type in Columns 5 and 6.

As an example, a malware fetches a payload from one C&C
server, a data file from another C&C server (two vfres vertices),
and stores both buffers in a string array. When the payload
content is executed (vesce), data dependency analysis will lead
back to both C&C servers. During dynamic analysis (§III-B),
ECHO leverages the assertions to verify which server is used to
deploy the remote payload. By checking the assertions, ECHO
will find that the edge-in assertion for vesce that v.b ̸= vsrc.b
(Row 8 in Table I) will fail for data dependency path to the
wrong C&C server. In §III-B, we provide more details about
how assertion verification contributes to model instantiation.

3) ECHO’s Formal Model: As a result, a valid ECHO
model (G = (V,E)) must fulfill two conditions: 1) the model
contains at least one vertex to send payload fetching request
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(vfreq) and one vertex to execute the payload (veexe), and 2)
there is at least one path that consists of edges in E that
connect the payload fetching and payload execution vertices
and have all edge assertions met. As a result, ECHO’s model
merges all identified execution paths into a graph. Noticeably,
the graph can exhibit more complexity when the payload
deployment routine implemented by the malware involves
additional payload loading procedures. For example, when the
malware pulls payload signatures from a remote with an
additional network request and verifies the payload against it,
the model will include the additional payload fetching and
loading vertices with corresponding edges. We further discuss
ECHO’s solution to overcoming the technical challenges
posed by deriving the graph-based model out of payload
deployment routines in §III-B.

B. Formal Model Instantiation

To derive the payload deployment routine, ECHO only
requires a malware as the input. Specifically, we conclude this
procedure in three steps. Firstly, without prior knowledge from
the input malware, ECHO must model the malware’s code
into vertices to represent lifecycle events. Noticeable, this
presents a challenge beyond simply matching the called API
with a vertex type defined in Table I. This requires ECHO to
combine the API signatures and the context information
collected from the runtime for vertex annotations. Secondly,
ECHO must identify the data dependency between vertices for
edge generation. Thirdly, ECHO must find complete execution
paths representing the malware’s payload deployment routines
from fetching the remote payload to executing it. This
involves generating paths in G from edges in E and validating
them through assertion accumulation. Unfortunately, to our
knowledge, no prior work can solely overcome challenges in
these tasks. As a result, ECHO proposes a program analysis
module to derive the formalized model.

Technically, ECHO’s vertex modeling requires a sandbox
with a code hooking technique to log context information from
particular system API calls. ECHO pre-defines the rules to
map the system API and the context information to derive
various vertex types. Besides, ECHO enables a force execution
technique to trigger payload deployment code actively. For
steps 2 and 3, ECHO accomplishes this by first identifying
the potential execution paths between the payload fetching
request vertex (vfreq) and payload execution vertex (veexe), and
then removing the false-positive paths by verifying the edges
along the paths with the accumulated assertions. ECHO achieve
this with a hybrid data dependency analysis and a customized
assertion verifying mechanism. In the following, we present
ECHO’s approach as a platform-agnostic solution with the
necessary techniques for each step. Next, we further show our
prototype implemented on the Android platform with technical
details in §III-B3.

1) Vertex Instantiation: In general, for each ECHO-hooked
API, ECHO injects the tailored code before and after the
execution of the API and collects the call stack trace. Tailored
to each vertex type, ECHO follows the vertices’ definition
in Table I and models them from the malware’s code as
follows:

Network Request Sending (vfreq) - This vertex represents
the malware sending network requests to a backend. ECHO

models this vertex by hooking request sending APIs and logs
the annotations of remote URL and request headers.

Network Response Handling (vfres) - The vertex represents
the malware handling the response. ECHO hooks the APIs of
getting the response body, headers, and results separately and
merges the results of these API calls into a single vertex. To be
noticed, for frameworks implementing asynchronous response
handler interface, ECHO needs to hook the actual customized
handler method that implements the interface.

Writing Binary to File (vlfw) - ECHO hooks system APIs
for writing the binary from a buffer to a local file to track
file writing behaviors. This vertex is usually identified when
malware caches the downloaded binary locally.

Read Binary from File (vlfr) - ECHO hooks file reading APIs
to identify malware loading a local file. Such vertex can be
identified when the malware dumps the binary locally and loads
it asynchronously in the payload deployment routine.

Binary Decoding (vldec) - This vertex covers a variety of
malware’s operations to modify the content of a binary with
either decoding procedure (e.g., base64) or decryption
procedure with a key (e.g., encrypted unzip, AES decryption).
For decoding cases done with a system API, ECHO can hook
particular APIs to gather the algorithm (vldec.alg), the
encryption key (vldec.key), and the binary before and after
decoding. However, for malware implementing customized
encoding, such as using XOR with a constant key, ECHO can
collect the key during dynamic analysis.

Binary Segmentation (vlseg) - This vertex covers the behavior
of malware segmenting a binary and collects partial of it. For
example, the malware may fetch a remote JSON object and
dump an executable payload value with a ’dictionary’ key. Also,
this covers the case that the malware gets a substring of a text
payload. ECHO hooks particular APIs to gather segmentation
indexes and the binaries before and after the segmentation.

Integrity Verification (vlverify) - Regarding the frontend may
verify the integrity of the payload before execution, ECHO
hooks the APIs for verification to collect the algorithms, the
key, and the verification results.

Script Code Execution (vesce) - ECHO hooks system APIs
for loading and executing the payload in script languages.
Meanwhile, ECHO tracks the entry point method enabled in
the executed script. In case the script has no entry point method
defined but executes the code in sequence, ECHO represents
the entry point as a dummy main method. ECHO also pinpoints
the context-cross interfaces.

Binary Code Loading (vebcl) - ECHO hooks system APIs
for loading pre-compiled binary into the malware’s runtime
environment, this is only specific to the payload written in a
compiled language (e.g. C++, Java).

Entry Point Method Invocation (veexe) - ECHO hooks the
entry point method calls of a compiled payload and gathers
the signatures. Notably, ECHO leverages the call stack trace
to resolve the method caller-callee relationship to determine
whether a call is an entry point for the remote payload.

In the sandbox, ECHO logs the corresponding API call and
logs the necessary information for annotations associated with
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each vertex type. Besides, ECHO keeps tracking the temporal
sequence of each log, we represent the sequence as an execution
trace, denoted by ET , with each logged vertex denoted by
vet ∈ ET . We further showcase our implemented sandbox
prototype in §III-B3 and the Android-specific API-to-vertex
mapping list in §A.

2) Graph Generation: ECHO’s strategy of graph
generation comes with three steps. ECHO firstly identifies the
potential execution paths of the malware fetching and
executing the payload. Next, ECHO removes false-positive
paths by accumulating the assertions for each path. Thirdly,
ECHO merges the payload deployment routines’ paths into a
graph as the formal model.

Initially, ECHO tracks the data flow with taint analysis.
Specifically, ECHO takes vfreq as source vertices and veexe as
sink vertices and finds all path-sensitive data flows between.
As a result, ECHO collects a list of data dependency paths
(represented as ddp) for each pair of sink and source vertices,
denoted by DDP = {ddp|ddp = (vfreq, v

e
exe, Vddp, Eddp)}.

Here Vddp denotes a list of vertices statically resolved along
with the data dependency paths and Eddp represents the edges
on the path that connects two vertices from Vddp. For each
vertex vddp ∈ Vddp of a data dependency path, ECHO resolves
the caller-callee relationship from the path (ddp) to derive a
static call stack trace. Noticeable, this enables ECHO’s
generality even when only static taint analysis is available (as
our showcase in §III-B3). However, the static call stack trace
can be substituted when the dynamic taint analysis could
capture the runtime call stack trace.

Next, ECHO derives the model from the list of data
dependency paths (DDP ) and the execution trace (ET ) with
the formal model generation algorithm shown in Algorithm 1.
As the input, the algorithm assumes the data dependency is
collected independently and does not contain vertices’
annotation information. To start with, for each data
dependency path ddp ∈ DDP , ECHO accumulates the
assertion along the path to match the vertices from the
execution trace ET to each statically resolved vddp ∈ Vddp

(Line 39 - Line 42). Specifically, this is done with a
backtracking algorithm, as the Line 24 - Line 38 present
in Algorithm 1. Toward each ddp, this function takes its
statically resolved vertices list (ddp.Vddp) a backtracking
index (initially as 0), and a temporary data dependency path
(dtmp) to cache processing results. Traversing each static
vertex vddp in sequence, ECHO first matches all execution
trace vertices that represent the same event as vddp with the
function declared in Line 2 - Line 10. The matching is
accomplished by checking the stack traces and APIs from
vddp against every vet in ET (Line 6).

Next, ECHO applies the backtracking logic to test each
matched vet with assertion verification, as done in Line 12 -
Line 22 in Algorithm 1. This is done by verifying the edge-in
and edge-out assertions (pre-defined in Table I) for the edge
between the last vertex in dtmp and the tested vet (Line 32)
with their annotation information. In case the verification
passes, ECHO append the new vet to the dtmp (Line 33) and
process next vddp in Vddp (Line 34). In case it reaches the last
vertex in Vddp, the dtmp now stores a data dependency path
with each vddp ∈ Vddp matching a vet ∈ Vet and meet all
assertions Line 24. ECHO saved the deep copy of dtmp as a

Algorithm 1: Formal Model Generation Algorithm
Input: ET : Dynamically captured execution trace
Input: DDP : List of data dependency paths from vfres to vlint

pairs
Output: G: Formal Model Instance
//Declare an empty set of valid data dependency paths

1 D ←− ∅;
//Function for filtering vertices from dynamic

execution trace, which has the same event as vddp
2 Function FindVerticesForEvent(vddp, ET ):
3 Vet ←− ∅;
4 for vet ∈ ET do

//Check called API and stack trace
5 if vet.api == vddp.api &&
6 vet.callStackTrace == vddp.callStackTrace then
7 Vet.add(vet);
8 end
9 end

10 return Vet;
11 end

//Verify assertions between two vertices from
execution trace with their annotations’ information

12 Function VerifyEdgeAssertions(vsrc, vsnk):
//Dummy source vertex is always valid.

13 if vsrc == dummyHead then
14 Return true;
15 end
16 assertionSet←− union(vsrc.edgeOutAssertions,

vsnk.edgeInAssertions);
17 for a ∈ assertionSet do
18 if !isAssertionMet(a, vsrc, vsnk) then
19 Return False;
20 end
21 end
22 Return True;
23 end

//Backtracking function for matching execution traces
vertices to ddp and verifying assertions.

24 Function MatchV erticesOnPath(Vddp, index, dtmp):
25 if index == Vddp.length− 1 then
26 D.add(dtmp.deepcopy());
27 Return;
28 end
29 vddp ←− Vddp.getItemAt(index);
30 Vet ←− FindV erticesForEvent(vddp);

//Verify the assertions between each vet and the
last vertex in dtmp.

31 for vet ∈ Vet do
32 if VerifyEdgeAssertions(dtmp.lastV ertex, vet) then
33 dtmp.appendV ertex(vet);
34 MatchV erticesOnPath(Vddp, index+ 1, dtmp);
35 dtmp.removeLast();
36 end
37 end
38 end

//For each ddp ∈ DDP, check if all path events have
matched vertices v ∈ V with all assertions met.

39 for ddp ∈ DDP do
//The dtmp tracks temporary data dependency path

with assertion met in backtracking algorithm.
40 dtmp ←− newListWithDummyHead;
41 MatchV erticesOnPath(ddp.Vddp, 0, dtmp);
42 end

//Merge all data dependency paths in D into G

43 G←− ϕ;
44 for ddp ∈ D, e ∈ ddp.Eddp do
45 G.addV ertex(e.vsrc);
46 G.addV ertex(e.vsnk);

//Add edge to graph with source and sink vertices
and data dependency context d on the edge

47 Graph.addEdge(e.vsrc, e.vsnk, e.d);
48 end
49 Return G;
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Fig. 2: Formal Model Instantiated From The Youku Sample.
The linked list in the middle is the formal model with identified
in-vivo system influence (red dotted line), with the payload
deployment routine shown on the left and the remediation
payload generation procedure on the right.

valid data dependency path, which represents a payload
deployment routine implemented by the malware (Line 26).
Finally, in Line 43 - Line 49, ECHO merges all edges from
all valid data dependency paths into the graph G as the formal
model.

3) Android Running Example: In the following, we walk
through ECHO’s model deriving procedures against our
running example with our prototype on the Android platform.
Figure 2 shows the derived formal model (as the linked list
shown in the middle) which represents the identified payload
deployment routine at the left. The right part of Figure 2
represents the ECHO’s procedure to generate the remediation
payload, as detailed in §III-D. ECHO first derives the payload
fetching and execution vertices by hooking network request
APIs (e.g., DefaultHttpRequest.execute) and
response handler (i.e.
response.getEntity().getContent) to get the vfreq
and vfres vertices as well as their annotations. With a similar
approach, ECHO hooks the WebView’s loadUrl API. As it
loads and executes the script from a local file or a remote
URL directly, ECHO models it into a combination of a file
reading vertex (vlfr) and a script execution vertex (vesce).
Specific to Android, this uses a component-level force
execution sandbox with API hooking capability, which we
provide additional implementation details about in §B. In
addition, as a unique challenge in the Android platform,
ECHO features a multi-threading stack trace logging
algorithm (as detailed in §C) to capture the complete stack
trace for each vertex logged along the execution trace.

To derive the data dependency paths between payload
fetching vertices (vfreq) and payload execution vertices (veexe
and vesce) in Figure 2, ECHO deployed a hybrid data flow
analysis, which uses the dynamic execution trace to improve
static taint analysis results (§D). Next, by applying
the Algorithm 1, ECHO removes the false-positive data
dependency paths (ddp) and ends up with the formal model
shown in Figure 2. Specifically, ECHO finds that, after
fetching the payload, the malware unzips the raw payload
(vldec), extracts the html content from the unzipped JSON
binary (vlseg), and dumps the file to the local (vlfw) before
loaded by WebView (vlfr and vesce). This formal model
enables ECHO to pinpoint the in-vivo influence of the remote
payload and generate the remediation payload.

C. In-Vivo System Influence Analysis

As ECHO finds the payload deployment routine with entry
point methods, its next step is to pinpoint the in-vivo
influence of the remediation payload. Specifically, with the
capability of reusing the payload deployment routine enabled
by the malware, incident responders still cannot simply
replace the malicious payload with a remediation payload,
which can lead the takedown attempt to a dead end. Take the
Youku malware as an example (§II), with a JSI payload
deployment routine, it is not feasible to implement arbitrary
Java code in html-based payload for remediation. ECHO
must identify how the remediation payload can affect the
malware when the malware executes the payload by calling
the entry point method, we call this the payload deployment
routine’s in-vivo influence.

Pinpointing the in-vivo influence requires identifying
remeidation-capable APIs (denoted by γ). They refer to
system API that can be directly or indirectly called in the
payload to interact with the malware’s runtime context and
induce malware remediation consequences (i.e., notifying end
users about the infection and removing the malware from the
victims’ device). This requires ECHO to accomplish two
technical checkpoints: 1) ECHO needs to check the context
limitation of the payload, and 2) identify the system API that
can be utilized by the remote payload if it is in a limited
context. For the first checkpoint, ECHO checks this by
awarding the runtime context when the entry point method
(veexe) of the remote payload is called. If the context is the
same as the malware, then ECHO considers the payload to
have the same privilege and the payload can implement
arbitrary code. However, with the payload having an isolated
context, ECHO must track the pre-defined routines enabled by
the malware to engage the context for remediation.

Context-Switching Interface. In general, if malware attempts
to deploy a payload written in other languages, to enable
the payload to interact with the malware’s context, it must
pre-define APIs that can be invoked from the payload’s context
to execute its method body in the malware’s context. These
APIs must be implemented in the malware’s code prior to the
remote payload deployment. As these APIs enable the payload
to execute code crossing the context boundary, we name such
APIs pre-defined in the malware’s code as Context-Switching
Interfaces, denoted by i. In this case, the only approach that
enables the remediation payload to influence the malware is
calling the context-switching interfaces in the payload and
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passing the parameters to the pre-defined system APIs in the
interfaces’ method body.

With a similar technique introduced in §III-B, ECHO
achieves this by tracing the data dependency paths between
the parameters of the context-switching interfaces (i) and the
remediation-capable APIs (γ) and verifying the vertices along
the path. With this, ECHO can also handle cases with
parameter manipulation (e.g., string segmentation and binary
decoding) by checking the payload loading vertices along the
path and ensuring the parameter propagation is valid.

1) Remediation-capable API Finding: With our prototype,
specific to Android WebView’s isolated context, ECHO
defines five types of remediation-capable APIs for JSI payload
deployment routines. We list them with the parameter passing
rules to be fulfilled as below:

Command Execution (γce) – APIs executing Linux shell
commands to impact the device directly, a command should
be passed from i to γce for remediation.

Application Termination (γat) - System APIs can be invoked
to terminate the app, such as System.exit. In this case, no
parameter is needed to shut down the malware.

Intent Control (γint) - This allows the app to open a new view
or activity. For Example, passing Intent.ACTION_ VIEW
and a URL as parameters, this API allows a device to show an
alert page to users. Besides, an Intent. ACTION_DELETE
intent can ask for users’ permission to uninstall the malware.
ECHO needs to ensure that the context-switching interface i
can pass both the intent type and the optional parameter to the
γint, such as the URL for the popup view.

Toast Message (γtst) - Toast APIs can be used to pop up
a toast message passed from the entry point method on the
screen. This enables ECHO to show a user an alert.

Load Webpage (γweb) - WebView’s loadUrl APIs can show
users with webpages. This enables incident responders to collect
users’ content and provide malware-cleaning guidance. ECHO
considers that a string representing the loaded URL must be
passed from i.

As shown in Figure 2 for the running example, ECHO
found that the malware passes the parameter from the method
runCmd of the JSI context-crossing interface i
RequestInfoControllerBridge to Runtime.exec,
as the remediation-capable API (γce). This enables the
incident responders to run Linux shell commands to remediate
malware. Noticeably, this API list can be easily extended by
adding more APIs, given ECHO’s modular design.

2) Extending ECHO to Other Platforms: Although we
showcase ECHO’s in-vivo influence analysis tailored for
Android with a JSI payload routine, a similar idea can be
easily extended to other platforms and different payload
deployment routines. For instance, with malware using an
electron framework to build desktop malware, the payload
written in web code is isolated and must engage the runtime
context with the framework-enabled APIs. ECHO only needs
to extend the prototype on the targeted platform and extend
the remediation-capable API list. shell.openExternal
in electron framework, for instance, has the same Command
Execution capability as listed in §III-C1.

D. Remediation Payload Construction

With the payload deployment routine’s formal model and
the in-vivo influence analysis results, ECHO’s last step is to
generate a remediation payload and provide guidance for
incident responders to customize, package, and test the
remediation before deployment.

1) Remediation Payload Template: ECHO generates the
therapeutic payload template in two steps: Firstly, based on
the formal model and corresponding in-vivo influence results,
ECHO tailors the remediation payload template toward each
malware. Toward a payload deployment routine that executes
a payload in a scripting language, ECHO generates the
template to be executed by script execution vertices (vesce). In
case the payload deployment routine takes a payload in a
compiled language, ECHO generates the source code as the
template, which can be compiled into a binary to be loaded
and executed by vebcl and veexe vertices in the model. In case
the payload earns unlimited in-vivo influence, such as the
payload being deployed with a RDCL routine, ECHO only
needs to implement and export the entry point method. The
entry point methods information can be retrieved from the
entry point method execution vertex veexe. Within the entry
point method body, ECHO fills it with an ad-hoc template and
enables incident responders for further customization.

If the payload has a limited in-vivo influence and requires
to call remediation-capable APIs (γ) through calling
context-crossing interfaces (i), ECHO must generate the
remediation payload template by passing essential parameters
from i to γ. This requires ECHO to enumerate the
remediation-capable APIs (γ) that can be indirectly invoked
via calling the interfaces and implementing the parameter
format by reversing the data dependency paths identified
in §III-C. As the example shown in Figure 1, ECHO identifies
the Commend Execute capability, which enables the Linux
shell command execution in the malware’s context. In the
template, lines 8 and 9 implement the interface signature.
Lines 13-14 and 18-19 are tailored to pass the Linux
command parameter to the γ. This enables incident responders
to both notify end users with a customized web page and
perform auto-deletion.

2) Remediation Payload Customization: Specific to our
prototype, towards a RDCL remediation payload that runs
arbitrary code, incident responders can update the ad-hoc
payload body accordingly to collect the user’s consent and
automate the frontend removal. Towards a JSI remediation
payload, for different capabilities, as shown in Figure 1,
ECHO still enables incident responders to add a customized
user-notification URL. Lines 4-5 also allow incident
responders to freely select the features they want to enable
based on the payload’s capability. As a result, ECHO provides
incident responders with both capability and flexibility in a
scalable manner. Next, ECHO backtracks the formal model to
identify paths between payload fetching vertices (vfreq) and the
payload execution vertices (veexe) and reversing the payload
loading sequences. As shown in the right side of Figure 2, the
identified payload loading vertices from the model guides
incident responders to package and deploy the remediation
payload via template generating, encoding, zipping, and
hosting it on the seized C&C servers, which is revealed by the
annotation of the payload fetching vertices (vfreq).
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TABLE II: Overall Takedown Routine Identification Results.

Family #Samples RDCL Routines JSI Routines FSD2 LSD2 Takedown3(%)
#R1

unique #S1 #B1 Capabilities4 #R1
unique #S1 #B1

hiddenapp 113 2 109 54 - 0 0 0 2022-08-30 2023-01-25 109 ( 96.46%)
shedun 94 9 67 6 - 0 0 0 2022-09-06 2022-09-22 67 ( 71.28%)
hiddad 89 1 57 25 - 0 0 0 2022-08-12 2023-01-25 57 ( 64.04%)
fakeadblocker 69 2 68 39 - 0 0 0 2022-09-01 2023-01-26 68 ( 98.55%)
skymobi 66 9 56 4 - 0 0 0 2022-09-06 2023-01-03 56 ( 84.85%)
grayware 48 3 30 11 Tst,Int 2 19 2 2022-10-09 2023-01-24 32 ( 66.67%)
spyagent 46 0 0 0 Tst,Int 2 31 1 2022-08-30 2023-01-26 31 ( 67.39%)
hiddenads 37 2 37 29 - 0 0 0 2022-08-30 2023-01-26 37 (100.00%)
smspay 35 3 12 2 - 0 0 0 2022-09-06 2023-01-24 12 ( 34.29%)
remotecode 29 1 29 20 - 0 0 0 2022-08-30 2023-01-26 29 (100.00%)
smssend 16 0 0 0 Int 2 2 2 2022-09-07 2023-01-22 2 ( 12.50%)
resharer 14 0 0 0 AT,Tst,Web 3 7 2 2022-08-14 2023-01-13 7 ( 50.00%)
metasploit 11 0 0 0 Int 2 2 4 2022-09-02 2023-01-16 2 ( 18.18%)
youku 7 0 0 0 CE 1 5 1 2022-09-03 2022-10-06 5 ( 71.43%)
robtes 7 0 0 0 Int 1 1 1 2022-10-25 2022-12-27 1 ( 14.29%)
masplot 5 0 0 0 Int 1 1 1 2022-09-08 2023-01-08 1 ( 20.00%)
smsbot 5 0 0 0 Int 1 1 1 2022-09-09 2022-11-05 1 ( 20.00%)
ramnit 4 0 0 0 Int 1 1 1 2022-09-14 2023-01-21 1 ( 25.00%)
nimda 3 0 0 0 AT,Tst 2 2 3 2022-09-01 2022-11-13 2 ( 66.67%)
backdoor 2 0 0 0 Tst 1 1 1 2022-09-08 2022-09-30 1 ( 50.00%)
hypay 1 0 0 0 AT 2 1 1 2022-09-27 2022-09-27 1 (100.00%)
silentinstaller 1 0 0 0 Int 1 1 1 2022-10-05 2022-10-05 1 (100.00%)

Total 702 185 465 1365 5 23 75 22 2022-08-12 2023-01-26 523 ( 74.50%)
1: Numbers of unique routine (#Runique), malware samples have RDCL (or JSI) routines (#S), and backends (#B).
2: First Seen Date (FSD) and Last Seen Date (LSD).
3: Number and percentage of samples can be taken down through identified routines.
4: Remediation-capable APIs, include WebView (Web), Intent (Int), Toast Message (Tst), App Termination (AT), and Command Execution (CE).
5: Several routines and backends are shared by multiple families. These are the sum of unique routines and backends.

IV. EVALUATION

Implementation. ECHO’s prototype is implemented on the
Android platform with multiple integrated modules. Our
dynamic execution framework is complemented by
Xposed [24] plugins (15k LOC). The framework’s network
uses a MiTM Proxy [25]. The guided taint analysis module is
built on top of FlowDroid [26] with additional customized
code (2,000 LOC). These modules are integrated into a
modular pipeline scripted in Python to guide the analysis. We
discuss extending ECHO to other scenarios in §VI-B. For
hardware, we deployed our static analysis on an in-house
cluster with 5 VMs. Each VM runs Ubuntu 20.04 with 120GB
memory and 16 vCPUs. Our dynamic analysis framework is
deployed on our testbed, which features 10 customized Pixel 3
phones and a local desktop that runs Ubuntu 20.04 with 16GB
memory and quad-core 2.4 GHz Intel Xeon CPUs. The
processing time per sample varied by its code complexity,
ranging from 2 to 10 minutes for dynamic analysis and 3 to
60 minutes for static analysis.

Dataset. To evaluate the prevalence of Android remote code
reflection malware, we deployed ECHO against 702 malware
samples. We daily pulled the Android malware sample stream
from VirusTotal [27] from Aug. 10, 2022 to Jan. 26, 2023,
resulting in over 20,000 random malware samples in our initial
dataset. We filtered each sample based on VirusTotal’s report
with over five detection engines reporting it is malicious [28]. To
find samples that may execute remote payloads, we compiled a
payload deployment-related API list as shown in §A, performed
a simple dynamic sandboxing execution, and selected samples
that invoked one of those APIs. This yielded 1,057 samples.
We reverse-engineered the samples manually and found that the

sandbox produced 355 false positives (i.e., the malware executed
an API from the list but not related to payload reflection). Our
results were confirmed with industry and VirusTotal reports, and
this became our ground truth. We labeled the malware families
with VirusTotal reports and AVClass2 [29]. This resulted in a
dataset of 702 samples across 22 families, including 580 RDCL
candidates and 170 JSI candidates with 48 overlapping.

A. Takedown Routine Identification

To evaluate the performance, ECHO was deployed on the
702 candidates from the evaluation dataset to identify RDCL
and JSI routines, as detailed in Table II. The first 2 columns
show the malware family names and the sample counts in the
dataset. Columns 3-5 and 7-9 show the number of identified
RDCL and JSI routines (#Runique), malware samples (#S), and
identified payload hosting backends (#B). Column 6 shows
the accessible remediation capabilities for the JSI routines.
Columns 10-11 present the First and Last Seen Date (FSD and
LSD) from VirusTotal for each family. The last column lists
the count and percentage of malware that can be taken down.

In the Total row of Table II, ECHO can successfully take
down 523 of 702 samples (74.5%). From the 523 total, ECHO
identified 470 malware that can be removed and 53 that can only
inform the user (e.g., provide instructions to remove manually).
We manually confirmed these results. Specifically, 465 out of
580 (80.17%) RDCL candidate samples and 75 out of 170
(44.12%) JSI candidates can be taken down through ECHO’s
methodology. For the remaining 179 samples, ECHO reported
no deployment routine that could be used for remediation.
This included 115 RDCL samples using local resources and
95 JSI samples either loading local HTML files or lacking
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TABLE III: Top 15 Payload Hosting Backends.

Backend IP #P1 #S1 #F1 Routines TLS2 Geo2 Ownership FSD2 LSD2 Takedown3

RDCL JSI

**iaocft.com *.*.229.90 1 77 2 3 0 False HK DXTL-HK 2022-09-06 2022-09-19 77
**shui.com *.*.7.123 1 47 3 5 0 False US HK Megaplayer 2022-09-06 2023-01-03 47
**qq.com *.*.226.35 1 17 1 0 1 True CN ChinaNet 2022-09-09 2022-09-30 17
**ch.cn *.*.216.185 1 17 1 2 0 False CN Huawei Cloud 2022-10-09 2022-10-09 17
**xapt.com *.*.125.182 4 13 1 1 0 True NL Hostinger 2022-11-10 2022-12-01 13
**x5.com *.*.58.414 4 11 2 4 0 False CN CloudVSP 2022-09-06 2022-09-18 11
**ks.cn *.*.249.217 1 6 1 0 2 False CN China Telecom 2022-08-14 2022-10-19 6
**sullion.pro *.*.36.203 1 7 2 1 0 True US Cloudflare 2022-10-02 2023-01-26 7
**ione.club *.*.48.13 1 6 2 1 0 True US Cloudflare 2022-08-30 2022-11-10 6
**ningba.info *.*.24.228 1 6 2 1 0 True US Cloudflare 2022-08-30 2023-01-01 6
**ianeeu.info *.*.4.129 1 6 2 1 0 True US Cloudflare 2022-09-01 2023-01-18 6
**ckets.pro *.*.59.132 1 6 2 1 0 True US Cloudflare 2022-09-04 2023-01-24 6
**ceme.info *.*.58.122 1 6 2 1 0 True US Cloudflare 2022-09-04 2022-12-20 6
**esme.info *.*.58.164 1 6 2 1 0 True US Cloudflare 2022-09-10 2022-11-13 6
**ker.cn *.*.33.274 1 5 1 0 1 False CN China Telecom 2022-05-01 2022-10-06 5
1: #P, #S, #F are shorts for numbers of payloads, malware samples, and families respectively.
2: Using TLS protocol (TLS), Geographic location (Geo), First Seen Date (FSD), and Last Seen Date (LSD)
3: The number of samples can be taken down by seizing the backend and deploy a remediation payload.
4: The backend has been taken down at the time of our analysis, and the IP information is based on DNS history.

sufficient JSI capabilities.4 As ECHO performed correctly on
these samples, incident responders can still use the identified
C&C backends for alternative takedown approaches.

For RDCL routines, ECHO found that malware in the
same family share routine implementations. For hiddenapp,
out of 113 samples, 109 samples share only two unique
RDCL routine implementations, which connect to 54 C&C
backends. Interestingly, the shared routine implementations
can still connect to different C&C backends. For example,
ECHO identified 29 remotecode samples sharing one
routine implementation to fetch malicious payloads from 20
backends. In Table II, 18 RDCL routines are identified from
465 samples (in 9 malware families), exposing an opportunity
for incident responders to reuse the payload generated by
ECHO to perform the frontend remediation on a large scale.

Column 6 of Table II shows the JSI payload capabilities.
ECHO found five malware families (Rows 3, 12, 14, 19, and
21) exhibit App Termination (AT), WebView loading (Web),
and Command Execution (CE). These capabilities reported by
ECHO enable incident responders to disrupt and even remove
the malware from infected devices. Additionally, ECHO found
five malware families (22%) enabling APIs to show Toast
messages and ten families (45%) enabling Intent sending, which
provide incident responders opportunities to either notify the
victims with an alert message or a warning page. Notably,
grayware malware possesses both RDCL and JSI routines,
offering varied takedown strategies.

From the dataset, we also observed malware that are not
part of well-known families. For these families, the malware
samples may be implemented by different attackers and be
more diverse. Such samples may or may not implement either
a RDCL or a JSI routine. For example, the smssend family (Row
11) profits from silently sending SMS messages from infected
devices [30]. ECHO detects 2 samples out of 16 implementing
a JSI routine and thus applicable to ECHO’s takedown solution.
We manually verified that the rest of the samples are not
capable of receiving and executing remote commands. We

431 samples were candidates for both RDCL and JSI groups.

additionally validated ECHO to show that it could accurately
identify deployment routines with low false positives and false
negatives, shown in §E due to space constraints.

B. Payload Hosting

Table III presents the top 15 payload hosting backends,
ranked by the number of samples ECHO found connecting to
them. The results are aggregated by the effective second-level
domain (ESLD). Columns 1 and 2 present the ESLD and
resolved IP. We masked these to avoid them being used to
target any still-infected frontend devices. For inactive
backends, ECHO uses the full URL to indicate a unique
payload and retrieves IP data from DNS history. Columns 3-7
details the number of hosted payloads, samples, families, and
routines linked to each backend. Column 8 shows whether the
malware used TLS. Geographic information (Geo) and
Ownership are shown in Columns 9-10. Columns 11-12 show
the FSD and LSD of the samples interacting with each
backend. Column 13 enumerates samples that can be taken
down via backend seizing.

In Row 2 of Table III, ECHO identified backend
***shui.com hosting one payload fetched by 47 malware
samples across 3 families. Our further analysis suggests that
the payload fetching vector is performed by a shared SDK,
hinting at a potential malware build kit. As shown in Rows
8-14, ECHO identified 43 different malware communicating
with Cloudflare’s 104.21.0.0/16 subnet. Noting significant
similarity in the C&C URL format, we reverse-engineered
these payloads and found massive code sharing with minor
updates, suspecting a single malware campaign. Surprisingly,
Row 3 highlights a subdomain of qq.com, one of the largest
Internet companies in China, which is abused by the 17
malware. While the URL is not deactivated, we are working
together with our industry collaborator to report this abuse.
For geographic location distribution, the majority of C&C
backends are located in the US (53%) and China (33%),
emphasizing the challenges incident responders may face in
blocking or sinkholing all C&C backends — highlighting the
importance of frontend malware remediation.
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TABLE IV: Deployment Routine Implementation Results.

Type Payload Deployment Routine S1 F1 R1 TD2

RDCL

JSON → APK → Reflection 297 5 3 297
APK → MD53 Verify → Intent 107 3 9 107
APK → Reflection 30 3 2 30
Zip → APK → Reflection 17 1 2 17
DEX → Reflection 13 1 1 13
Data→XOR4→DEX→Reflection 1 1 1 1

JSI Zip →JSON →HTML→WebView 5 1 1 5
HTML → WebView 70 19 22 70

1: Numbers of samples (S), families (F), and routines (R).
2: Number of samples that can be takendown.
3: MD5 algorithm is used for verifying the remote payload.
4: The data is decoded by XORing a constant pattern.

C. Deployment Routine Measurement

To study payload deployment routines’s implementations,
we classified the identified routines from 523 samples into 8
groups based on the fetched payload type, loading path, and
execution method. Table IV lists the 6 RDCL (Row 1-6) and
2 JSI (Row 7-8) routine categories in Column 2. Columns 3-5
show the number of malware samples (S), families (F), and
routines (R). The last column shows the number of samples
with deployment routines that ECHO can remediate. Notably,
ECHO found 297 out of 580 (51.21%) samples in 5 families
that use JSON to wrap binaries, adhering to RESTful API
practices [31]. In Rows 3-5, 60 samples with five routines fetch
and execute zipped or plain-text remote binaries with code
reflection. For JSI routines, ECHO found 70 malware directly
loading remote HTML via WebView.

Payload Encoding. Our evaluation found only six malware
from two families encoding payloads. Five samples from the
Youku family (as introduced in §II) load HTML payloads with
a complex encoding sequence (Zip → JSON → HTML →
WebView). Another RDCL sample used XOR encoding with a
constant pattern “UTF8”. As shown in Table IV, ECHO reported
these behaviors to incident responders with exact locations and
data flows in the malware’s code, helping incident responders
to encode their payload before delivery (as we did in the Youku
demo video in §II-A).

Payload Verification. ECHO found 107 malware samples
from 3 families utilizing MD5 payload verification to check
payload integrity. Remediating these malware is similar to
Payload Encoding discussed above but also involves backend
takedown efforts. First, incident responders can refer to
ECHO’s output to identify the C&C backend that delivers the
verification signature (the “signature backend”). Next, incident
responders can sign their remediation payload prior to delivery.
Lastly, during their existing backend takedown efforts, incident
responders can seize the traffic from the signature backend
and push the new verification signature for the remediation
payload to the malware. The other 416 (79.54%) samples do
not verify their payload, and no malware encrypted or signed
the payloads, which aligns with the findings of prior
work [16]. We discuss handling advanced attackers in §VI-A.

D. Packing and Obfuscation

We evaluated ECHO’s capability to manage packed and
obfuscated malware samples, as shown in Table V. Each row

TABLE V: Malware Packing And Obfuscation.

Family #Samples #Obfus. Packer #Unpack

shedun 94 83 N/A N/A
skymobi 66 66 N/A N/A
resharer 14 14 MTP: 1 1
grayware 48 6 Jiagu: 6 6
smsreg 28 1 qdbh: 11 11
downloader 75 1 qdbh: 9 9
generickdz 11 0 qdbh: 8 8
spynote 9 3 AE1: 3 3
congur 2 2 AE1: 2 2
smssend 16 0 qdbh: 3 3

Total 363 176 43 43 (100%)
1:AE is short for ApkEncryptor packer.

TABLE VI: ECHO’s FakeAdBlocker Analysis Results.

Package com.beacon.weather

Backend ****one.club

RDCL
Routines

Routine: JSON → APK → Reflection
Download: main.apk
Class Name: b.b.a.v$d
Method Name: checkServerTrusted

Disruption
Payload

1) Alert users
2) Uninstall frontend bots

shows the number of total samples and samples protected by
packers or obfuscators in each family. Packers and obfuscators
were labeled with APKiD [32], with results manually verified.
Obfuscated samples have unpacked code but non-readable
methods and fields. The last column shows sample counts that
ECHO successfully unpacked.

Of all 702 malware samples, we found 176 obfuscated
malware samples. Obfuscation poses no challenge to ECHO
because its program analysis does not require easy-to-read code.
ECHO also successfully handled all 43 packed malware samples
from 8 families with four packers, successfully detecting these
packers trying to load classes from encoded binaries.

V. CASE STUDIES

A. New Backends and Routines Sharing

In this section, we showcase how ECHO could help incident
responders to remediate a FakeAddBlocker family that has 68
samples and talks to 39 different backends. Our evaluation
highlighted a malware, named com.beacon. weather5, which
retrieves a payload from its C&C backend *****one.club and
employs RDCL routines for code execution, as detailed in
Table VI. The backend communication is TLS-encrypted and
the C&C backend dispatched a JSON response containing the
embedded payload binary for payload fetching.

ECHO’s Payload Routine Identification reported that the
payload is decoded and stored locally as main.apk. The
APK contains an API, b.b.abv$d: void
checkServerTruested, which is called via reflection.
Using this API, ECHO crafted a RDCL remediation payload
that can trigger arbitrary behaviors (e.g., uninstall itself,

5sha256 hash: 07e984b03d5a84dcfe8023adbae628a7b8089544b
6a047b70beef40b1e2a869f
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TABLE VII: Payload Hosting For Dexapt Botnet.

Dex Name SHA2561 #Samples ∆Days Takedown

2021-09-22.dex ***589664 1 0 1
2021-09-23.dex ***589664 1 1 1
2021-09-25.dex ***589664 2 2 2
2021-10-04.dex ***589664 1 9 1
2021-11-03.dex ***114866 1 30 1
2021-11-17.dex ***9bad58 1 14 1
2021-12-09.dex ***9bad58 1 22 1
2021-12-24.dex ***6ed746 1 15 1
2021-12-27.dex ***6ed746 1 3 1
2022-01-10.dex ***6ed746 3 14 3

Total 4 13 12 13
1: Last 6 digits of SHA256.

alerting users) by reusing the malware’s RDCL routine. We
further queried VirusTotal for siblings of this sample and
found an additional 102 samples. From these, ECHO
identified another 15 backends hosting the same payload and
confirmed that the same takedown method applies to all
samples. This demonstrates ECHO’s capability to swiftly
neutralize malware even if they shift C&C servers and fetch
updated payloads, enabling responders to consistently execute
remediation upon malware detection.

B. Payload Updating Over Time

In our study, ECHO identified the domain **xapt.com as a
C&C backend distributing frequently updated malicious
payloads. Cisco Talos [33] has also flagged this domain for its
suspicious activities. As outlined in Table VII, 13 samples
were found fetching 4 unique DEX payloads from this
backend. Column 1 shows the hosted DEX filenames, which
also reveals the updated timeline of the malware operators.
Despite these files being actively available, Column 2 shows
the last 6 digits of payload hashes. Column 3 lists the number
of frontend samples from our dataset fetching each payload.
Column 4 highlights the days between each payload update.
Column 5 enumerates samples that ECHO can remediate.

The malware operator consistently updated the payloads
over a period of 110 days, from September 22, 2021 to January
10, 2022. As shown in the Total row of Table VII, the malware
operator updated the hosted payload around every 12 days.
ECHO’s output showed that these payloads utilize a consistent
entry point accessed by the malware access via code reflection.
Intuitively, this is the best design for malware operators: They
can regularly update the payload and do not need to update the
malware, which can continue to reflect the same entry point.
With ECHO’s insight, incident responders can leverage this to
distribute a single remediation payload to all infected devices.

VI. DISCUSSION

A. ECHO Against Advanced Attackers

TLS-Encrypted Traffic. As demonstrated in §IV-B, using
application-level encrypted protocols, specifically HTTPS, is a
prevalent method for encrypting traffic to prevent monitoring.
While this does not affect the ECHO’s capability to discern
payload deployment routines and generate remediation
payload templates, incident responders need to undertake
additional measures to deploy a remediation payload. To

elaborate, when redirecting a payload request via HTTPS,
incident responders must collaborate with a certificate
authority (CA) to invalidate the existing certificate and
establish a new one for the redirected backend. This has been
previously employed in botnet sinkholing against
TrickBot [34] and Glupteba [35].

Symmetric Encryption. To enhance both integrity and
confidentiality, attackers could encrypt and sign the payload
before deployment. By using symmetric encryption algorithms
(e.g., AES), the payload can be encrypted by the C&C
backend and decrypted by the malware with the same key. In
this case, ECHO identifies the payload deployment
routines and reports encryption usage. Similar to the XOR
encoding case in §IV-C, incident responders can extract the
encryption key by following the payload deployment
routine and data flows reported by ECHO. Subsequently,
incident responders can use the extracted key to encrypt the
remediation payload prior to deployment.

Asymmetric Encryption. While not observed in our dataset,
prior research [11] suggests that attackers could sign payloads
using asymmetric encryption. This poses challenges for
incident responders in deploying remediation payloads without
the requisite signing key. These challenges are not specific to
ECHO, and handling strong encryption in any part of an
attack is known to require additional human effort. In such
cases, ECHO will remain instrumental in helping incident
responders swiftly generate remediation payloads and identify
C&C backends. If the malware fetches the public key from a
C&C backend, then remediation is the same as the MD5
verification case presented in §IV-C. Alternatively, malware
could hard-code the public key, but this would add risk for the
malware operator who will lose the ability to deploy new
payloads if they lose the private key. Notably, earlier studies
have shown the feasibility of leveraging C&C backend
surveillance to retrieve credentials [16], [36], [37]. Should
incident responders obtain the encryption key pair, they can
still deploy a remediation payload with ECHO’s findings.

B. Generality

The methodology employed by ECHO can be adapted to
address malware across various platforms through their payload
deployment routine. Windows malware may download and
run standalone executable binaries or DLL files [38]. Besides,
Linux malware (like Mirai) can run remote shell commands
and execute remote payloads [39]. Incident responders can
construct a comparable pipeline using S2E [40], simulating
the malware and identifying the routines through concolic
execution. Similarly, this approach is directly applicable to
malware crafted in scripting languages, such as Electron apps,
which often exploit dynamic code to run remote payloads [41].

C. Program Analysis Limitations

Like all taint-analysis-based malware research, ECHO may
produce a false negative result for malware that can thwart
state-of-the-art taint analysis tools. As such, anti-tainting
techniques would pose a problem for ECHO’s model edge
generation and in-vivo influence analysis components, which
both rely on tracking the data flow between binary statements.
We consider solving the anti-taint analysis evasion as an
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orthogonal problem. However, ECHO ’s design is modular
and can incorporate more robust taint-analysis tools when they
are developed. Besides, particular malware may develop a
long idle period before fetching the remote payload and thus
cannot be effectively triggered by ECHO’s force-execution
technique. This may weaken ECHO’ capability of generating
dynamic vertices from the sandbox. Although this is an
orthogonal challenge for ECHO, the solutions from several
studies [42], [43] can be utilized to overcome the problem.
We also consider this as a future work direction.

VII. ETHICAL CONSIDERATIONS

We limit our study to analyzing malware in an isolated
sandbox and passively monitoring their network traffic. The
development and evaluation of ECHO was done only within
our testbed on devices owned by our research lab (§IV).

Regarding real-world deployment, ECHO is designed for
law enforcement and authorized organizations with legal
permission. U.S. federal law enables authorized incident
responders to seize botnet traffic and access malware on
private devices under Rule 41 of the Federal Rules of
Criminal Procedure [20]. Similar legal frameworks exist in
other jurisdictions [44]. Following the precedent set by prior
botnet takedown campaigns [21], [22], [45], the use of ECHO
is an allowable and effective option for incident responders
with legal permission.

This legal protection has also been extended to private
companies working on behalf of national governments. Holt
et al. [46] documented the legal and cooperative challenges
faced by law enforcement, which limits their ability to respond
to cybercrime alone. In response, national governments often
seek cooperation with private companies for malware takedown,
such as Microsoft’s TrickBot takedown [21] and public web
services taking action against suspected malware accounts [16],
[47]. Notably, the Retadup takedown [23] required collaboration
between the French police department and Avast to globally
distribute a remediation to victims. This exemplifies how experts
under law enforcement’s supervision can utilize ECHO correctly
and ethically.

Ideally, incident responders must carefully evaluate the
consequences and side effects of deploying a remediation
payload. Incident responders should get a user’s consent
before disrupting or uninstalling the malware from their
device whenever possible. Legal frameworks exist for ECHO
to aid authorities in fighting cybercrime by allowing them to
respond surgically and minimize collateral damage.

VIII. RELATED WORK

Botnet Analysis. JACKSTRAWS [6] identified C&C
communications by building a behavior graph of malware’s
system calls and data exchange over network connections.
While it can potentially detect payload downloading,
system-call-based behavior graphs are too coarse-grained to
identify a reusable payload deployment routine. Without
statement-level data flow tracking, the existing technique
cannot be directly augmented to identify payload deployment
routines. Thus, when malware encodes variables between API
calls, JACKSTRAWS’s data-flow tracking will break.

Further, JACKSTRAWS is orthogonal to generating and
deploying a remediation payload. ECHO performs fine-grained
statement-level analysis to the malware to identify C&C
backends and their payload deployment routine. Paleari et
al. [12] proposed automatically deleting dropped malware
binaries on infected devices, but requires incident responders
to have access to the device for manual deployment. ECHO is
inspired by this work and expands upon it in two essential
ways: 1) ECHO not only deletes dropped binaries but
provides customizable payloads to enable various remediation
capabilities. 2) ECHO enables payload deployment by reusing
the malware’s payload deployment routines.

Botnet detection via machine learning-based approaches
has been widely covered by recent research [48], [49]. For
a takedown, prior work focus on detecting and remediating
botnets through invalidating C&C backends [11], [50]–[56].
SmartGen [57] extracts Android apps’ backends via symbolic
execution but is limited by path explosion and malware evasion.
Nadji et al. [7] proposed a DNS-level solution to find botnet
C&C servers. Stone-Gross et al. [9] showcased a temporary
real-world botnet seizing. Distinctively, ECHO emphasizes
the malware takedown via their embedded update mechanism,
empowering incident responders to clean up malware without
directly accessing infected devices.

Dynamic Code Loading Analysis. Poeplau et al. [58]
introduced a static analysis to detect external code loading in
Android apps. Qu et al. [59] examined malicious behaviors in
dynamically loaded Android code. Zhou et al. [60] used
heuristics to identify suspicious dynamic code loading, while
Falsina et al. [61] proposed a code verification protocol to
help secure legit dynamic code routines. Different from these,
ECHO identifies RDCL routines that can be flipped by
incident responders to remediate malware.

WebView Analysis. Both Yang et al. [62] and
BabelView [63] automatically find JSI vulnerabilities in apps.
ECHO is motivated by these works, but rather than using
static analysis or Monkey [64], ECHO employs hybrid
data-flow analysis for capability profiling. Lee et al. [65]
proposed a static analysis to fingerprint hybrid apps. Tang et
al. [66] performed a comprehensive binary analysis of
WebView-based malware. These works pinpoint malicious
behavior in hybrid apps, which is complementary to ECHO’s
goal of reusing JSI routines to remediate malware.

IX. CONCLUSION

ECHO is an automatic framework to formalize and
generate remediation solutions for remote-controlled malware.
By deriving the formal model for the malware’s internal
payload deployment routines, ECHO enables the payload’s
capability analysis and remediation payload generation.
Utilizing a hybrid technique, ECHO uses analysis of the
malware to aid incident responders with legal authorizations in
the cleanup of infected devices. With 702 samples, We
demonstrated that ECHO empowers incident responders to
remediate malware with a 74.50% takedown rate rapidly.
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APPENDIX A
ANDROID-SPECIFIC VERTEX AND API MAPPING

We present the vertex and system API mapping targeting
Android-specific platform in Table VIII.

TABLE VIII: Android-Specific API And Vertex Mapping

Class Name Method Name Vertexes

java.net.URLConnection connect vf
req

java.net.URL openStream vf
req , vf

res

java.net.URLConnection getContent vf
res

java.net.URLConnection getInputStream vf
res

okhttp3.Call execute vf
req, v

f
res

okhttp3.Call enqueue vf
req

okhttp3.Response body vf
res

retrofit2.Call execute vf
req, v

f
res

retrofit2.Call enqueue vf
req

retrofit2.Response body vf
res

com.android.volley.RequestQueue add vf
req

com.android.volley.Response.Listener onResponse vf
res

org.apache.http.client.HttpClient execute vf
req, v

f
res

org.apache.http.HttpResponse getEntity vf
res

java.io.FileOutputStream write vl
fw

java.io.BufferWriter write vl
fw

java.io.PrintWriter println vl
fw

java.io.DataOutputStream writeInt vl
fw

java.io.DataOutputStream writeUTF vl
fw

java.io.RandomAccessFile writeUTF vl
fw

java.nio.file.Files write vl
fw

java.io.DataInputStream readInt vl
fr

java.io.DataInputStream readUTF vl
fr

java.io.RandomAccessFile readUTF vl
fr

java.nio.file.Files readAllLines vl
fr

java.io.DataInputStream readInt vl
fr

java.io.FileInputStream read vl
fr

android.content.res.AssetManager open vl
fr

java.io.BufferedReader read vl
fr

java.io.BufferedReader readLine vl
fr

android.util.Base64 decode vl
dec

org.json.JSONObject <constructor> vl
dec

com.google.gson.Gson fromJson vl
fr, v

l
dec

javax.xml.parsers.DocumentBuilder parse vl
fr, v

l
dec

java.util.zip.ZipInputStream read vl
dec

java.util.zip.GZIPInputStream read vl
dec

javax.crypto.Cipher doFinal vl
dec

N/A XOR operation vl
dec

java.lang.String substring vl
seg

java.lang.String split vl
seg

java.lang.String append vl
seg

org.json.JSONObject getString vl
seg

org.json.JSONObject getInt vl
seg

com.google.gson.JsonObject get vl
seg

org.w3c.dom.Document getElementsByTagName vl
seg

org.xmlpull.v1.XmlPullParser nextText vl
seg

java.security.MessageDigest digest vl
verify

javax.crypto.Mac doFinal vl
verify

java.security.Signature verify vl
verify

java.util.zip.Checksum update vl
verify

java.util.zip.Checksum update vl
verify

android.webkit.WebView loadUrl vf
req, v

f
res

ve
sce

android.webkit.WebView loadData ve
sce

android.webkit.WebView loadDataWithBaseURL ve
sce

java.lang.ClassLoader defineClass ve
bcl

dalvik.system.DexClassLoader <constructor> vl
fr, v

e
bcl

dalvik.system.DexClassLoader loadClass ve
bcl

dalvik.system.InMemoryDexClassLoader <constructor> ve
bcl

java.lang.reflect.Method invoke ve
exe

APPENDIX B
DYNAMIC VERTEX GENERATING SANDBOX

Given a malware as input, ECHO aims to detect
suspicious payload deployment behaviors as the vertexes
defined in §III-A. While static analysis can identify specific
API calls from decompiled binaries, it is limited to resolving
the parameters for each API. Thus, ECHO employs dynamic
execution to monitor suspicious API calls.

ECHO performs the forced execution at the Android
application component level to automate malicious behavior
triggering. These components, foundational to Android apps,
include Activity, Service, Broadcast Receiver,
and Content Provider. Their life cycle methods can
serve as the entry point of malicious code. For Example, with
the fake Youku malware (see §II), ECHO initializes the
malware and triggers all UI elements in each Component to
trigger the remote code execution behavior in the onCreate
method of WelcomeActivity. For Activities, that are
highly interactive, ECHO’s Execution Manager traverses
through their life cycle.

Figure 3 illustrates the Execution Manager (EM)
navigating Activities of the malware. Before the malware’s
initialization in Step 2 , ECHO instruments the zygote process
and injects analysis code to hook critical Activity life cycle
methods like onCreate and onResume in 1 . The analysis
code spawns the same process of the analyzed malware during
its initialization. As the entry Activity initializes, the rendered
interactive UI elements’ data is sent to the EM in Step 3 .
The EM maintains the status of the Activity stack and the
corresponding UI data. Using a depth-first search strategy, the
EM sequentially triggers each interactive UI element and its
event handlers in 4 . Upon one event gets triggered, the
malware updates the current foreground Activity data with the
EM again in 5 . After all UI elements in the foreground
Activity are engaged, the EM finishes the Activity in Step 6
and recursively navigates new foreground Activities. Post
navigating all Activities, the EM concludes the analysis and

Fig. 3: Design of Execution Manager. Blue events happen at
the Executor Manager’s process and red events happen at the
malware’s process.
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Algorithm 2: Multi-threading Stack Trace Generation

// A Key-Value map to cache thread-external
stack trace using thread id as the key.

1 const cacheMap = new Map();
// Additional map to cache thread-external

stack trace for thread pool case.
2 const cacheJobMap = new Map();
// The method is called before hooked

multi-threading methods.
3 Function BeforeMultiThreadingMethods(hookedMethod):
4 switch hookedMethod do

// When developer’s code starts a
customized thread

5 case thread.Start do
// Get current stack trace with

system API.
6 externalST = getCurrentStackTrace();

// Get the identifier of current
thread and cache the external
stack trace.

7 cacheMap.put(thread.id, externalStackTrace);
8 end

// When a target API that we need to
generate the full stack trace for is
called.

9 case targetMethod do
// Concat the cached thread-external

stack trace with current
thread-internal stack trace.

10 internalST = getCurrentStackTrace();
11 externalST = cacheMap.get(thread.id);
12 fullST = externalST.concat(internalST );
13 return fullST ;
14 end

// When thread pool receives a new job.
15 case ThreadPool.submitJob do

// Collect current stack trace with
system API.

16 externalST = getCurrentStackTrace();
// Use job’s identifier as the key to

cache thread-external stack
trace.

17 cacheJobMap.put(job.id, externalST );
18 end

// When a job is assigned to a thread in
the pool.

19 case ThreadPool.executeJob do
// As the actual thread is assigned,

sync the thread-external stack
trace to cacheMap.

20 externalST = chcheJobMap.get(job.id);
21 cacheMap.put(thread.id, externalStackTrace);
22 end
23 end
24 end

terminates the malware in Step 7 . For other components,
ECHO initializes them and calls their life cycle methods.

Context Information Extractor. Besides triggering malicious
behaviors from the malware, ECHO’s sandbox captures the
context information associated with each API call to resolve the
payload deployment routines. Specifically, ECHO meticulously
logs method call arguments and gathers supplementary details
essential for deployment routine identification. The indirect data,
such as the file path derived from File.write, is gathered
by examining the caller’s object. Notably, certain private fields,
being inaccessible directly, are retrieved using reflection. For
instance, ECHO investigates the private field of the declaring
class to pinpoint the ClassLoader and determine the loaded
binary path.

APPENDIX C
MULTI-THREADING STACK TRACE GENERATION

Generally, with Thread.getStackTrace API, ECHO
can hook any method and collect the stack trace. However,
suppose the method is executed within a spawned thread, the
directly collected stack trace will only log the method hierarchy
within the thread, and no information from the caller thread is
captured. To overcome this challenge, ECHO models various
multi-threading scenarios and generates the multi-threading
stack trace to capture cross-thread method call relationship.

The basic idea behind this module is that ECHO must
capture and cache the stack trace of the caller thread when the
spawned thread is initialized. The Algorithm 2 presents
ECHO’s strategy for generating multi-threading stack trace at
runtime. With a map from the thread and the thread-external
stack trace( Line 1), when a custom thread is initialized,
ECHO caches its thread-external stack trace ( Line 5-Line 8).
Later, when a hooked audited API of is called, ECHO can
retrieve the thread-external stack trace and combine it with the
thread-internal stack trace to generate a full multi-threading
stack trace ( Line 9-Line 14).

Line 15-Line 22 of the Algorithm 2 describe the scenarios
that the code is executed with a thread pool, thus multiple
threads are managed not by the developer but by the Android
system’s infrastructure. Compared to a customized thread, the
challenge comes from when the code is submitted as a job
to the thread pool, the actual thread to execute the job is
not determined. In this case, ECHO manages an additional
map to cache the thread-external stack trace using the job id
as the key ( Line 2). When a job is submitted to a thread
pool, the thread-external stack trace is cached in this new map
( Line 15-Line 18). As the job is executed in the thread pool,
the cache is then transferred from the job-keyed map to the
thread-keyed map (Lines Line 19-Line 22).

Toward the Android platform, we model both simple
thread cases and thread-pool cases (i.e., Handler,
Executor, ExecutorService). Regarding the
ThreadPoolExecutor case, which implements a thread
pool and takes Runnable object as the job, ECHO handles
the case with an additional strategy. Based on the fact that the
thread pool implements a First-In-First-Out sequence to
execute Runnable object, instead of a job-keyed map,
ECHO maintains a queue to sync with the internal job queue.
The queue pushes the thread-external stack trace when a job is
scheduled and pops one when a job is executed.

APPENDIX D
DYNAMIC TRACE-GUIDED DATA FLOW ANALYSIS

Traditional static taint analysis faces challenges from the
Override feature, which is a common practice in Java and
other modern programming languages. This technique allows
developers to redefine methods from parent-class methods
within child classes. As a result, static data flow becomes
inaccurate, as the method identified in the binary may be
overridden thus not the one actually called. For example, as
static analysis detects a call to Runnable.run, traditional
taint analysis, such as FlowDroid [26], can raise many false
alarms by mapping all potential run method implementations.
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TABLE IX: Validation Result for Remote Dynamic Code
Loading Detection & Remediation.

Family #Sample #DCL Routines 1 #C&C Backends

Tot. w/R. GT Gl TP FP FN GT Gl TP FP FN

hiddenapp 6 4 2 2 2 0 0 4 4 4 0 0
fab2 3 2 1 1 1 0 0 2 2 2 0 0
hiddenads 3 2 1 2 1 1 0 1 2 1 1 0
downloader 2 2 2 2 2 0 0 2 2 2 0 0
skymobi 2 1 1 2 1 1 0 1 2 1 1 0
grayware 2 2 2 1 1 0 1 2 1 1 0 1
smspay 1 0 0 0 0 0 0 0 0 0 0 0
shedun 1 1 1 1 1 0 0 1 1 1 0 0

Total 20 14 10 11 9 2 1 13 14 12 2 1
1: Columns 4-8 measure the number of unique RDCL routines.
2: fakeAdBlocker.

The routines can be implemented by multiple variants.

ECHO integrates insights from dynamic sandboxing to
guide static data flow analysis, particularly addressing the
caller-callee matching problem. ECHO concurrently logs call
stack traces for methods that commonly use the
Overriding feature as the sandbox navigates through the
frontend bot. For instance, when there’s a call to the
Runnable.run interface, ECHO logs the multi-threading
stack trace, pinpointing the actual method that gets executed.
After the sandboxing finishes, ECHO compiles all the logged
calls and their multi-threading stack traces. This consolidated
data is then supplied to the static data flow analysis, ensuring
a more accurate and informed analysis.

ECHO combines the strengths of both static and dynamic
analysis to enhance the accuracy of taint analysis. Initially,
ECHO builds a complete Control Flow Graph (CFG) with
decompiled binaries. Next, ECHO traverses the CFG to
pinpoint sink and source APIs. For methods having overriding
implementations, ECHO first looks up the dynamic logs and
searches for any call log that corresponds to the method under
analysis. To search for the match, ECHO leverages the
multi-threading stack traces, method signatures, and call
statement line numbers to align static method signatures from
CFG with dynamically captured method calls. If a match is
found, ECHO confidently proceeds with the data flow analysis
for that specific method, ensuring accuracy. Otherwise, ECHO
adopts a strategy similar to the state-of-the-art approach by
matching all candidates. As the output, to identify data
dependency between vfres and veexe vertexes, ECHO output d
for each vertex pair.

APPENDIX E
ADDITIONAL VALIDATION

Validation Dataset. In these experiments, we aim to validate
ECHO’s identification of payload deployment routines. We
randomly selected 20 samples from the 1,057 sandbox-filtered
dataset (detailed in §IV). We manually reverse-engineered these
samples to derive ground truth. Recall from §IV, this dataset
contains samples executed in the sandbox but do not have any
payload deployment routines. We include these to verify that
ECHO produces few false positives or false negatives.

RDCL Validation. Table IX presents the result of ECHO’s
RDCL routine identification. Column 1 shows the malware’s

TABLE X: Validation Result for JSI-based Remediation.

Family #Samples #JSI Routines 1 #C&C Backends

Total w/R GT Gl TP FP FN GT Gl TP FP FN

spyagent 5 1 2 2 2 0 0 1 1 1 0 0
smspay 5 0 0 0 0 0 0 0 0 0 0 0
resharer 3 1 1 1 1 0 0 1 1 1 0 0
nimda 1 1 2 2 2 0 0 2 2 2 0 0
grayware 3 1 2 1 1 0 1 1 1 1 0 0
fakeinst 2 0 0 0 0 0 0 0 0 0 0 0
metasploit 1 1 1 1 1 0 0 1 1 1 0 0

Total 20 5 8 7 7 0 1 6 6 6 0 0
1: Columns 4-8 measure the number of unique JSI routines.

The routines can be implemented by multiple variants.

family based on VirusTotal scan report and AVClass2 [29]
labeling. Columns 2-3 show the total number of malware
samples and samples with RDCL routines. Note that due to
variations in malware implementation within a single family,
the availability of RDCL routines may differ. Columns 4-8
and 9-13 respectively show the number of unique RDCL
routines and the number of C&C backends hosting the Java
payload for each malware family, broken down into ground
truth (GT) based on the manual investigation, ECHO’s
detection results (Gl), True Positive (TP), False Positive (FP),
and False Negative (FN) results. For example, for hiddenapp
family with 6 variants (Row 1), our manual investigation (GT)
confirmed that 4 out of 6 samples share 2 different RDCL
routines that fetch the payloads from 4 different backends,
and it matches ECHO’s results.

ECHO successfully recovered 9 unique RDCL
routines out of 10 ground truth routines (90%), with 1
routine missing from the grayware family. Also, ECHO
accurately identified 12 out of 13 backends (92.31%) with 2
FP cases from hiddenads and skymobi families. Our
security researcher manually investigated the reason for the
FN and the FP cases. The missed routine (FN) is caused by
the malware having a dead backend, and the payload should
be embedded in a JSON file. Although ECHO tries to respond
to the request with a dummy binary when the backend gives
no response, the frontend receives a payload in the unexpected
format and thus crashes. Thus ECHO missed the payload
execution behaviors to identify the routine and the C&C
backends. For 2 FP identifications, we identified that all 2
routines are caused by the over-tainting problem when
generating the formal model, which is a rare case.

JSI Validation. Table X presents ECHO’s results for JSI
candidates. Column 1 shows the malware’s family and
Columns 2-3 show the sample count and the numbers of
samples with valid JSI routines for each family. Columns 4-8
and 9-13 separately show the numbers of unique JSI routines
with remediation capabilities and the number of detected C&C
backends hosting the JS payloads. Among 20 samples, we
manually identified 8 JSI routines from 5 samples.

ECHO successfully detected 7 of them with 1 missing
JSI entry point, due to the data flow tainting receiving an
out-of-memory error with an oversize generated CFG. Also,
ECHO successfully identified all 6 backends that the WebView
loaded the payloads from. Compared with payload fetching
data flow tracking, we find that JSI methods are implemented
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more straightforwardly and come with smaller CFG, which
enables ECHO with a higher success rate. The validation also
implies as the routine is identified, ECHO can easily identify
the C&C backend that the frontend tries to fetch payload from.

Conclusion. Overall, ECHO identifies 19 out of 40 samples
with payload deployment routines. ECHO achieves an 88.89%
combined accuracy in identifying 16 out of 18 routines in the
validation dataset.
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